Understanding and recovering the drivers of salmon
productivity and resilience in the South Fork Eel River
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What does a healthy South Fork Eel River look like?

Four themes salmon productivity and resilience

o Juvenile Salmonid Life History Diversity and “ghosts of life histories past”
o The Salmonid and the Subsurface (Dralle, Dralle, Dralle!)

o Altered Foodscapes

o Lost Species Interactions

With these themes in mind let’s explore:
How might this river changed in the last 165 years? How might it not have
changed? How can we look forward?






(1) a shady tributary which stays cold 11 year; (2) a sunny tributary with high growth potential for salmon in spring but warm intermittent flow in late-summer; (3
and 4) the canyon-bound mainstem river, (5) a newly restored estuarine slough near Cannibal Island (showing unrestored pasture land beyond) and; (6) the open
estuary of the Eel River




Painting of Wiyot Elder Ki-we-lah-tah
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Cannery at Port Kenyon [Crop of an image from the Palmquist Collection in the Humboldt Room of HSU]
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John Snyder’s first description in 1925 of the “half-pounder” steelhead life history type in the Eel and
Klamath rivers. A half-pounder is an immature steelhead that returns to freshwater within about four
months of entering the ocean, and is primarily found in rivers in Northern California and Southern Oregon.



The synergy of doom: Mechanized Logging Boom +
1955 & 1964 Floods (and other floods)
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Figure 18. Number of Timber Operators and Total Timber Harvest: Humboldt County, 1940-1977.
(Henry J. Vaux, An Economic Appraisal of Forest Resources and Industries in Humboldt County,
California. 1954.: State Forest Notes 1961-1979).



The use of railroad “inclines”
made steam yarding on
extremely steep slopes
possible. The top of this
& = incline is visible to the left
B Of the yarder




Upper Bull Creek from Slide Creek to Panther Creek from 1942 (left) to 1965 (right). The extensive upland road networks, deforestation, and
flood damage are shown in stark contrast to the nearly unaltered 1942 landscape. The red arrows indicate the confluence of Panther Creek and
Bull Creek. From South Fork Eel River SHaRP Collaborative. 2021.




Frune 20—Paul Mudgett Memonal Bridge on US. Highwar 101 over the Eel
River at Rio Dell, 28 miles south of Eureka, Calif, destroyed >y rampaging flood-
vaters, December 23, 194, Photogrash by Eureka Newspapes, Inc.
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Channel widening from extensive bank
erosion was the dominant geomorphic change
along the lower Eel River during major floods.
As a result of the 1964 flood, the largest
amount of widening was 195 m and

represented an 80% change in channel width
(Sloan et al. 2001).

Excessive sediment deposition from
headwaters to estuary. In the lower river in
combination with levees and tidegates,
reduced tidal prism in the Eel River Estuary up
to 3 miles and reduced the total volume of
tidewater by approximately 40% since 1900
(SCS 1989).

Loss of deep pools in the lower Eel (especially
between Van Duzen and Fernbridge)



A review of bathymetry maps produced in 1869 showed that depths near the river mouth were 10 ft to 16 ft (3.05 m
to 4.9 m) and the North Bay and lower portions of McNulty Slough ranged between 9 ft to 13 ft (2.7 m to 3.96 m). The
North Bay channel ranged from 10 ft to 14 ft (3.05 m to 4.3 m) in depth, and the river thalweg and pools around Cock
Robin Island were from 25 ft to 31 ft (7.6 m to 9.4 m) in depth

Speaking of the fisheries, I will here say that the salmon fisheries of Eel river are an important branch of commerce, and
they cannot be carried on without the assistance of Indians. The river bed is generally full of snags, which must be
removed before seines can be hauled, and none but an Indian can go down in from three to six fathoms of water and
attach the necessary rigging for hoisting them out. -- Humboldt Times July 1869)

WHT (11 Aug. 1877) Rohnerville, August 6, 1877, Editor Times--...More than one hundred large sturgeon have been killed in
one deep place in Eel River, near the mouth of Van Duzen, in the last month.

In this way the fish can be dragged... out [of] the deep holes at the head of tide water where they are often forced to lie
and wait for enough water to allow them to ascend the river. Humboldt Times 1910

"Local anglers anticipate an old time fishing season here this year as the Weymouth pool is very deep and in the
condition of several years ago when it furnished the best of fishing. The river between the Weymouth and Van Duzen
pools is again in one channel, which will give the fish an opportunity to get over the riffles."

FE (5 Jan. 1917) Thousands of Salmon on Spawning Grounds--Before the recent heavy rains which have swelled the waters of
Eel river considerably, the deep pools in the river between Fortuna and Shively were literally filled with salmon which
had succeeded in passing the gillnets of the commercial fishermen at the mouth of the river.



Levees and Lower River
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Levees, tide gates, dikes, and berms
have been installed to reduce tide-
water volume, to reclaim wetlands
for agricultural conversion, and to
better control high water events.
The network of levees and tide
gates in the Eel River estuary has, in
places, blocked the ebb and flow of
the ocean tides and has reduced the
volume of water that is exchanged
during a tidal cycle. In 1870, the
tidal area was estimated to be 6,525
acres. By 1970, the estuary, inclusive
of sloughs and side channels, was
reduced to 2,200 acres, or 3.4
square miles (DFG —ERSSAP 97’ pg
4). SALT RIVER EIR
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Other important factors in Eel River salmon
decline that we’re not discussing right now

e Climate Change
* Marijuana boom of the mid 2000s
* Changes in Forest Structure Indigenous Burning
* The 1906 earthquake
* Agricultural runoff
e Potter Valley Project



1938 through 1976

Anadromous Salmonid Captures at Benbow Dam, South Fork Eel River
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From South Fork Eel River SHaRP Collaborative. 2021
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Historical counts of adult Coho Salmon at Benbow Dam in run-years 1938-39 through 1975-76 and estimates
from recent sonar counts conducted by CalTrout in 2018-19 and 2019-20. Dashed horizontal lines represent
means for 1930s/40s, 1950s, 1960s, and 1970s. Figure From Stillwater 2022.



What Else Might Have Changed That We Aren’t Focusing On?

Life history diversity and abundance of juvenile salmonids.
o What are the “ghosts of life histories past?”
o What characteristics of the Eel might give rise to salmon life history
diversity?
o How might we have simplified or reduced life history diversity and how
can we recover it?
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The ghosts of life

& histories past...

&% 633 miles of

stream channel in

the South Fork Eel
== River; but less

' then 150* miles

¥ of cold, perennial,
rearing habitat for
over summering
salmonids.

Based on SF Eel SHaRP 2021 Report




& How many adult
= fish could these
= “ideal” rearing
= stream produce?

i “Silly math for steelhead”
% (very inflated density and
survival numbers!)

L ~150 miles of
stream;
| 2000 smolts per
; : G mile;
S 59 SAR

300,000 smolts
15,000 adults

Image Landsat / Copernicus

Data SIO, NOAA, U.S. Navy, NGA, GEBCO B
* Data LDEO~Columbia, NSF, NOAA : _ Goog|€ Earth




B But estimates are

Tk

- 275 Squ»th_ F_Q?T( Eel

o did they come
& from? How did
& theydoit?

| Coastal eftithology

Image Landsat / Copernicus
Data SIO, NOAA, U.S. Navy, NGA, GEBCO
Data LDEO-Columbia, NSF, NOAA
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= that the SF Eel
e River produced 3X
= = this number of

i adult fish! Where

Hypothesis 1: They reared in,
& and occupied habitats that
were only seasonally
profitable and migrated to

non-natal habitat through an

§ array of life histories that have
been either extirpated or
massively reduced. Tracking
landscape scale growth
potential.
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Coastal Belt | Argillite / Sandstone Central Belt | Argillite-matrix melange

conifer - broadleaf evergreen forest deciduous oak - annual grass savanna
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Hahm, Rempe, Dralle, et al,. Water Resources Research, 2019



Wet sponge drips excess water,
and stays wet
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Habitat extent: wetted channel dynamics

Coastal belt, 17 km?

Central belt, 6 km?
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Habitat quality: stream temperature

Structure impacts runoff pathways
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Habitat across scales: from “unit-hillslope” to “watershed”
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The Salmonid and the Subsurface

Ephemeral stream  Perennial stream

Dralle et al. 2022 in review



Of course, there are more than two geologies...
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Even in the geologies we know...

- Groundwater feeds our streams, but the extent to which trees rely
on this groundwater, and how this ultimately impacts flow
generation, is very poorly understood (e.g. doug firification)

- What hydrogeomorphic variables control whether a reach is wet or
dry, and how can we measure these variables at scale?

- We still need appropriately complex, process-informed tools to
estimate how human activity will impact flows (e.g. numerous,
distributed users pumping hillslope groundwater for irrigation)



The subsurface may impact:

* Adult Migration and Spawning
e flow activation, winter recession characteristics and baseflow

* Egg Incubation
* water temperature, scour, desiccation risk

* Juvenile Growth Phenology
* Spring hydrograph recession timing relative to primary and secondary production

 Summer Survival
* Intermittency, water temperature, dissolved oxygen

* Life history syndromes



Seasonal Dynamics of Stream Hydraulics,
Primary and Secondary Production and Drift

Water Velocity [distance/time]

Invertebrate Flux [mass/time]

Invertebrate Concentration [mass/volume]

Summer Fall
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Adapted from Rossi et al. 2022



Mainstem Occupancy, growth, transit times, survival.

Juvenile Salmonid Counts at Benbow Dam 1939
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Figure From Stillwater 2022.

Total Counts

Chinook Salmon =63,574
Steelhead = 23226
Coho Salmon = 8696

True numbers of Chinook were
probably 2-3 million this year
(2%-3% capture) (Dewitt and
Murphy 1950).

Using the same math (shady!)
the steelhead run would have
been ~900,000 juveniles and
the Coho run would have been
~340,000 juveniles

In 1939 Shapovalov (1940) studied the
downstream migration of king salmon at
Benbow Dam. He installed a trap in the
fishway and re-leased a known number of
marked fish above the dam. From the ratio
of marked to unmarked fish the total
migration was estimated at 2 to 3 million
fish. Migrants were taken from April 1 to July
9, 1939, but the bulks of the migrants
passed the dan during the period June 1 to
June 28. Dewitt and Murphy 1950



Mainstem Occupancy, growth, transit times, survival.

Juvenile Salmonid Counts at Benbow Dam 1939
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Known Known

Lossion e Chinok e ?3:“ fineas St (e R Major Coho producing streams in the South Fork Eel.

105 S.F Eel River

113 S.F Eel River

118 Bull Creek

135 Subreach to 118
124 Bull Creek

126 Bull Creek

143 Squaw Creek

155 Mill Creek

434 Seely Creek

528 Trib to Little Sproul
728 Durphy Creek

747 Indian Creek

754 Indian Creek

779 Subreach to 754
764 Jones Creek

780 Sebbas Creek

[781 Sebbas Creek

784 Subreach to 781
I787 Coulborn Creek
790 Subreach to 787
793 Subreach to 787
|798 Anderson Creek
799 Anderson Creek

820 Piercy Creek

826 Standley Creek

829 Standley Creek

893 Wildcat Creek

941.5 Hollow Tree Creek

h to 941.5
950.3 Hollow Tree Creek

980 Bear Creek

984 S.F Redwood Creek
986 Subreach to 984
991 Bond Creek

992 Bond Cr eek

996 Michaels Creek
998 Subreach to 996
999 Subreach to 998

e
1007 Huckleberry Creei(

1010 Subreach to 1007
1017 Cedar Creek
1132 Tenmile Creek
1196 Subreach to 1132
1228 Little Case Creek
1229 Little Case Creek
1248 Cahto Creek
1254 Subreach to 1248

I 1306 Dutch Charlie Creek
1327 Kenny Creek
Total:
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* Sproul Creek (South Fork and West Fork)

* Hollow Tree Creek (Huckleberry Creek)

* Indian Creek (Sebbas, Coulbrun, Anderson Creek)
e Upper South Fork (Dutch Charlie and above)
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Late summer densities of juvenile coho salmon in three index sites of Hollow Tree Creek from 1986—2016.

Estimated from multi-pass electrofishing surveys. Source: Stillwater 2020 Draft SWRCB report



Available estimates of age-1 juvenile coho salmon production from spring outmigrant trapping in South Fork
Eel River tributaries. Source: Sproul Creek data from Vaughn (2007) and Hollow Tree Creek data from MRC

(2002). Counts across both streams ranged from 42,000 to 14,000 1+ individuals.

Estimated number of juvenile coho salmon (age-1 only)
Year West Fork South Fork Sproul Cr Hollow Tree
Sproul Cr Sproul Cr Total Creek
1999 787 366 1,153 -
2000 2,552 1,102 3,654 35,178
2001 1,962 763 2,725 35,976
2002 1,568 794 2,362 9,787
2003 100 667 767 -
2004 758 643 1,401 -
2005 1,898 2,050 3,948 -
2006 994 887 1,881 -
2007 3,066 1,962 5,028 -

' Trapping effort and start date varied considerably between years in Sproul
Creek and the early portion of the population may have been missed in
some years.

Source: Stillwater 2020 Draft SWRCB report



Life History Summary

Subsurface diversity suggest different sub-basins may exert selective pressures on traits
including size, age, physiology, and timing of juvenile salmonid outmigration. This partially
supported with historic trapping data (timing and age at least).

There is evidence of large age 0+ O. mykiss and reason to believe in 0+ O. kisutch life
histories outmigration but where did those animals go to finish their growth??
* Mainstem (thermally stratified pools?)
Non-natal tributaries (Everest 1973) — Cedar Creek? Price Creek; Howe Creek
Estuarine Ecotone (deep holes between Van Duzen and Ferbridge)

Salt River and tributaries
Sloughs

No clear trend in tributary abundance/density of Coho salmon over the last 25 years. Not
enough data to estimate downstream survival and smolt-to-adult return.

Most coho are currently produced in a few tributaries and reaches. Was that always the
case? Will that always be the case?

Was their diversity in osmoregulatory development of different runs ... e.g. allowing them to
use salt water in distinct times / ages? “Anticipatory process.”

Juvenile Chinook life history and abundance in the SF Eel are very understudied



What Else Might Have Changed That We Aren’t Focusing On?

Altered Foodscapes

__________ *  What might have
~~~~~~~~~~~~~~~~~ been the spatial

Near Marine temporal pattern of
estuaring Ecotons. == growth potential for
R ot juvenile salmonids in
the Eel River? How

has this changed in
the last 165 years?




Concentration

Potential

Expenditure

The “foodscape” is a
mosaic of linked
habitats with different
growth potential
phenologies that is
exploited by mobile
consumers and
supports multiple life
histories, often
through asynchronies
In resource
availability.



Estuary

Near
Marine

Entraining
terrestrial prey

A
R

Food

Concentration

Growth
Potential

Mainstem

Winter Spring Summer Fall

3,
) \,
£ SN =
B -_—‘
% ‘\\“‘“ e ""l, .
S & Yors, ======= Energetic Costs
= LTI
weeennnan FOOd Accessibility
= - Food Availability
Winter Spring Summer Fall
<«—— Autochthonous or
c J in-situ heterotrphic
‘o prey production
Q
Estuary §S;
o
o
L
Capture
Success
A v Winter Spring Summer Fall
s
>
) \ \{ Floodplain
> e
E \\ SLLLLIIT]
+— \ “‘I l.,,.'.
> \ ) > te, .
.9 \\ “““‘ o
. . |: Y “‘“‘; "-\
Maintem River
‘\\ :
> N o Winter Spring Summer Fall
\\ ““u ,, ',""'
‘?&“‘ : 4 " .
/ Sl Tributary
‘-““‘ LT
\_—-—

Energy
Expenditure



Assumptions of the 3 jyyenile salmon use the whole watershed,
Foodscape and they do so through multiple, co-
occurring life histories.

2. Salmon are fed by different
_______ trophic pathways in different
_______________ parts of the watershed. And

Ng@“‘!’@ﬂne these different pathways
produce asynchronous pulses of
B _E—§t_u_a_rj|09—E—C—"-tgxfi:f;j?}’ growth potential for juvenile
-\ \;\999@?/.& salmonids in time, and space.

3. Salmon life histories are
adapted to capitalize on the
asynchronous pulses of
growth that are unique to
each watershed and perhaps
water year.
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Altered Estuarine Foodscapes
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The importance of the Estuarine
Ecotone:

Salinity heterogeneity and isotonic
water:

Reduced energy costs
Supports any state of
osmoregulation

Estuarine food production

Fog belt water temperatures
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« Can by used by multiple life
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Data MBARI

Data SI10, NOAA, U.S. Navy, NGA, GEBCO
e DD Coturm S AR Google Earth




North Bay and Cannibal Island sloughs




Cannibal Island slough







A big handful of nutritious (at least for bugs) Ulva and Enterorhomha (marine derived
green algaes) |




Americorophium spinicorne Eogammarus confervicolus
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Altered Foodscape Summary

* Juvenile salmon (all species) use the whole watershed, and they do so through multiple, co-
occurring life histories. Salmon are fed by different trophic pathways in different parts of the
watershed. And these different pathways produce asynchronous pulses of growth potential
for juvenile salmonids in time, and space. This supports multiple life histories.

 How might the historic over-harvest; the synergy of doom, and the physical alteration of the
lower river have severed the capacity of fish to access growth potential?
* Loss of ecotone habitat (due to aggradation, levee and diking).
* Loss of non-natal habitat (pool filling)
* Loss resource subsidies (ocean, terrestrial, or riverine)
* Impacts to salmon prey species?

 How might the rise of pikeminnow have severed the capacity of fish to access growth
potential?
* Loss of non-natal habitat (pre-estuarine tributaries)
* The importance of mainstem rearing for density dependance
* The importance of accessing estuarine and ecotone habitats
* The movement and timing patterns of juvenile salmonids in the mainstem.
* Predation on salmon facilitators?



What Else Might Have Changed That We Aren’t Focusing On?

Lost Interactions

“And the other is Gary Nabhan’s idea. In one of his books he says that
animals don’t go extinct because someone shoots the last one, or a
bulldozer scrapes away the last habitat. They go extinct because the
web of relationships that sustain them unravels. He then put it in
anthropomorphic terms and said, they go extinct because of a lack of

ecological companionship.”

Jim Lichatowitch (2013)



Pacific Lamprey facilitate juvenile salmonids
Georgakakos et al. in prep
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More bugs and more foraging
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5, p = 0.38) C. foraging attempts by juvenile steelhead more foraging behind lamprey (paired t-test, p = 2.76e-05)

From Georgakakos et al. in prep, 2022
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Hmmm... what just happened?

Understanding and recovering the
“ghosts of life histories past.”

Understanding the linkage between
subsurface dynamics and ecological
response... and their role in population
diversity.

How/where have those historic life
histories been severed from riverscape-

scale growth potential? How can they be
re-connected?

What species interactions might be
critical to recovering native salmonids?

How can we address these and other
guestions as a community?
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