Only Scratching the Subsurface:
An Ecohydrologically Themed Tour of
the Eel River Critical Zone Observatory

Today, we’ll take a walking tour of the Eel River Critical Zone Observatory at the
Angelo Coast Range Reserve. We’'ll begin by contemplating a North Coast
ecological mystery that only geology can resolve. Next, we’ll visit Angelo’s
experimental hillslope “workshop” — Rivendell — where extensive hydrological
infrastructure produced a set of clues that reveal how a structured subsurface
hillslope environment controls belowground water storage, and consequently
water availability to streams and trees. Finally, we’ll explore the confluence of the
South Fork Eel and Elder Creek to discuss how subsurface water storage dynamics
impact stream flow and temperature regimes that matter for salmonids.
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Conceptual diagram modified from original by Daniella Rempe
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Rivendell

O el “workshop”

Sensors ~4000 m?
®  Soil Moisture Sensor: TDR
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Each year in the upper5to 12 m
at individual wells about the
same amount of rock moisture is
gained and lost.

Annually consistent cycle of storage dynamics
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At individual wells this amount is
equal to about 30 to 60% of the
annual precipitation.

In the 2014 drought, of the 1000
mm of total rainfall, 300 mm of
it was stored as rock moisture
and used by trees.

Average rock moisture seasonal
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VMS ® hardwoods ® Doug fir
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The Eel River CZO Vadose Zone Monitoring System (VMS)

A direct investigation of the processes controlling
critical zone structure and hydrologic dynamics
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Forest carbon balance

Vadose zone monitoring system  Lysimeter Well
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Hydrological modeling
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Storage capacity and flow regime
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Storage capacity and stream temperature
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(Q)=0.5m3/s (Q)=8.0 m¥/s

{Tair)=20 °C ~ (Tair)=20°C 7 Predicted mean temperature
: from May 15- July 1 in 4
scenarios. Scenarios are
combinations of two mean
flow conditions (0.5 and 8.0
m3/s, x-axis) and two air
mean temperatures (16 and 20
°C, y-axis). Mean river
temperatures are calculated
from the parameter estimates
of a linear mixed-effect
model. The pikeminnow icon
shows where channel mean
temperature is 16.3°C, which
was the mean temperature
from May 15- date of
pikeminnow arrival at
Wilderness pool from 2015-
2019 and is an estimate of
pikeminnows upstream
distribution July 1 in each
scenario. In scenario A the
whole reach is above 16.3 °C,
and scenario D the 16.3 temp
threshold, and presumably the
upstream limit of pikeminnow
migration for such years, is
below our study reach.

Increasing Air Temperature —
Water Temperature (C)

(Q)=05m¥s Q) =8.0m¥s _ _
(Tair)=16 °C (Tair)=16 °C Georgakakos 2020 (dissertation)
Georgakakos et al, in prep

Increasing Flow —

Linear densities of Coho Salmon, (Oncorhynchus kisutch calculated by summing the total counts within each unit
and dividing by its length. Each point represents one survey. Densities are plotted against River km (where 0 =
mouth of SFER, increasing upstream). Left column of plots show surveys in late May and the right Surveys in early
August. Rows of plots correspond to size classes. Years are shown as shapes and habitat types as colors.
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Wisdom of the sponge

Evaporation fully dries the wet sponge
Wet sponge drips excess water,
and stays wet
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Forests in the American West are commonly rooted into
weathered bedrock mantled by thin soils
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Monthly water flux or deficit [mm]

The Case of California’s Missing Streamflow

# March 31

“We have 100 B  ' | ”,’
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years of data
saying if you have
this much snow,
you would expect
this much runoff,”
de Guzman said.
“But that fell apart
this year.”

Sean de Guzman, chief of Nasa
snow surveys and water Earth
supply forecasting, CA DWR Observatory.
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A Central Belt WaterSHED (39.7732, -123.5460)

Saturation
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