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Klamath Basin

37th Annual Salmonid Restoration Conference
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Session Coordinators:
Mike Belchik, Yurok Tribe
Cynthia Le Doux-Bloom, Hoopa Valley Tribe

The session will feature a range of insightful topics, including: (1).
Klamath Estuary; (2). Baseline Data Analyses; (3). Application of Tribal
Ecological Knowledge; (4). Effectiveness of Restoration Projects; and
(5). Pre-dam removal through post-dam removal monitoring.

Presenters will include tribal, agency, and consultant
biologists, academics conducting studies in the Klamath Basin, and
member of the Klamath River Renewal Corporation.
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Project Funds Available

e PacifiCorp customer funds
via PUC funding
agreements

— Oregon: $184M
— California: $16M

e (California Prop. 1 Bond
Funds
— Up to $250M

Klamath River between JC Boyle Dam and Powerhouse
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2 — Update on Progress of Dam
Removal
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Regulatory Schedule

Milestone

Status

klamathrenewal.org/requlatory

KRRC applications to FERC and
States

FERC Transfer Application

FERC Surrender Application

FERC/Board of Consultants
Process

CA Water Board & ODEQ Water
Quality Certifications

KRRC Definite Plan sent to FERC
EIR under CEQA

Submitted September 2016

FERC’s March 15, 2018 order split license and
deferred decision on transfer

Responded to FERC’s information requests

Convened Board of Consultants to provide peer review
Decision on transfer pending

National Environmental Policy Act (NEPA): FERC has
not yet initiated review
Decision on surrender pending

July 29 Submittal to FERC
e Revisions to Definite Plan
e Updated Cost Estimate
» KRRC Fiscal Capacity - $450M+$1
* Risk Management Approach
e Insurance/Liability Transfer

OR final certification released on Sept. 7, 2018
CA draft certification released on June 7, 2018

Filed June 29, 2018

CA Water Board draft EIR released December 2018
KRRC comments submitted February 26, 2019

10
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Endangered Species Act (ESA)
Consultation

e ESA Section 7 Consultation on Project Effects to
ESA Species

e KRRC Technical Team leading Biological
Assessment (BA) development

— KRRC is in regular consultation with co-lead

agencies FISH, %;{V;?;%%LEE
* National Oceanic and Atmospheric
Administration (NOAA) Fisheries

e US Fish & Wildlife Service (USFWS)
— BA expected in 2019

e NOAA and USFWS will issue a Biological
Opinion (BO) on project effects and mitigation
after NEPA process is complete

———
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Tribal Consultations

Formal Consultations - AB 52 Informal Consultation - Sec 106
e CA Water Board leading the AB52 e FERC designated KRRC and PacifiCorp
tribal consultation process as part of as nonfederal representative
CEQA process — AECOM facilitating on their behalf
— Agreed to tribal cultural e Pursuant to Section 106 of the NHPA
resources mitigation under CA and Advisory Council regulations

e Conducting regular Tribal Caucus and
Cultural Resources Working Group
(CRWG) Meetings with federal and
state agencies and eight Native
American tribes

e Goals include definition of the Area
of Potential Effects (APE) and
preparation of cultural resources
plans and agreement documents

* KLAMATH
FERC/Yurok Consultation o
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Technical Studies

e Draft Environmental Impact
Report released Dec 2018;
KRRC comments submitted
Feb 2019

e Upcoming:
— Continue field studies and
technical assessments

— Risk management:
insurance and liability
protections

Environmental Impact Report for the
Lower Klamath Project License Surrender
Volume |

State Clearinghouse No. 2016122047

anananananan

Water Boards
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Procurement Status

v" Definite Plan

— Completed Definite Plan as basis for regulatory approvals and design-build contract
— Detailed methods for implementation, including deconstruction, mitigation, and risk
management
v' Engagement of Progressive Design-Build (PDB) contractor
— Issued Request for Qualifications (RFQ) for PDB contractor for dam removal
— lIssued Request for Proposals (RFP) to three finalists
— Selected Dam Removal contractor

v’ Insurance
— Developed comprehensive insurance approach to dam removal project
— ldentified new indemnification options to optimize use of Liability Transfer Corporation (LTC)
— Anticipate selecting LTC in 2019

v’ Preparation for mitigation after dam removal

— Selected contractor for native seed collection — Pacific Coast Seed and Mid Klamath
Watershed Council

— Selected contractor for construction of vegetation test plots - Hanford ARC
— Selected contractor for native seed propagation — Benson Farms and S&S Seeds

-
KLAMATH
RIVER RENEWAL
CORPORATION

14



3 — Restoration Strategies
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Primary Work Components/Categories
Related to Aquatic Resources

City of Yreka Intake and Pipeline Replacement
Temporary Construction Access Improvements
Permanent Road and Bridge Improvements
Downstream Flood Control Improvements
Hatchery Modifications

Dam Modifications

Dam and Hydropower Facility Removal
Reservoir Restoration

General Construction Progression

A A A

Recreation Plan and Restoration

—
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5. Hatchery Modifications

Iron Gate Hatchery Fall Creek Hatchery

 Will continue operations for ¢ Will reopen for Coho and
Chinook smolt Chinook yearling production

e Riparian water right on Bogus ¢ New circular tanks in the
Creek will be registered current hatchery footprint

e Bogus Creek water diversion ¢ New settling pond and
will be evaluated under CEQA discharge point for Fall Creek
and in consultation with is being evaluated

NMFS and CDFW

e Water supply modifications
would occur on the current
hatchery footprint

e x W _--r =
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6. Dam Modification

Modify dam infrastructure to
allow for full reservoir
drawdown

e Removal of sediment

 Demolition of existing
gates

e Installation of new gates
at Iron Gate and Copco
No. 1 diversion tunnels

p—
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7. Dam and Hydropower Facility
Removal

e Controlled release using modified
infrastructure (January 1 start)

e Drawdown to tunnel inverts by March
15

e Full dam and hydropower facility
removal
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8. Reservoir Stabilization

e Stabilize remaining
accumulated reservoir
sediments (as appropriate)

 Fully restore reservoir
areas to native habitats

 Monitoring and adaptive
management

KLAMATH
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Recreation Plan and Restoration

New and enhanced recreation
facilities to mitigate for impact to
year-round Hell’s Corner rafting
corridor

Developing Recreation Plan
through stakeholder process

Plan may include additional
boating and fishing access and
other new recreation features

Will restore reservoir recreation
areas to native habitats

i
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10. Aquatic Resource Measures

e Measures to reduce dam removal-
related effects on aquatic
resources

 AR-1 Mainstem spawning

e AR-2 Juvenile outmigration
e AR-6 Sucker relocation

e AR-7 Freshwater mussel
relocation

———
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AR-1 Mainstem Spawning

e Monitor and remove
sediment/debris from tributary
confluences in Hydroelectric Reach
and downstream from Iron Gate

e Complete spawning habitat surveys
and augment spawning habitat as
needed — November 2019
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AR-2 Juvenile Outmigration

e Salvage yearling coho salmon

from Klamath River — December
2020

 Monitor tributary conditions and
salvage juveniles if turbidity and
water temps exceed thresholds —
2021-2022

e Monitor and remove
sediment/debris from tributary
confluences in Hydroelectric
Reach and downstream from lron
Gate —start in 2021

———
8 KLAMATH
RIVER RENEWAL
nnnnnnnnnnn




AR-6 Sucker Relocation

e Currently sampling to characterize
demographics, genetics, and
relative abundance — completed
sampling in fall 2018, spring 2019

e Continue sampling in fall 2019,
spring 2020

e Salvage Lost River and shortnose
suckers and relocate to isolated
water body per USFWS directive —
fall 2020

- @ —
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AR-7 Freshwater Mussels

e Determine taxa and current
distribution downstream from
Iron Gate Dam — May 2019

e Assess potential relocation
habitats in the Hydroelectric
Reach and in the vicinity of
Klamath River-Trinity River
confluence — May 2019

e Salvage and relocate mussels prior
to dam removal — Fall 2020

s
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Aquatic Resources Data Collection

e Before Dam Removal

e Sampling and salvage — suckers, freshwater mussels,
juvenile salmonids

e Observation and modification — tributary confluences,
tributary spawning habitat

e After Dam Removal

e Observation and modification — tributary confluences,
mainstem spawning habitat

—
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4 — Next Steps
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Next Steps

2019

Contractor begins preliminary work — May 2019

Submit revised Definite Plan to FERC and Board of Consultants —July 29,
2019

Respond to any further FERC AIR’s and/or recommendations from BOC in
future reports

Spring 2019 sucker sampling reporting — May/June 2019

Freshwater Mussel sampling — May/June 2019

Tributary spawning habitat surveys — November 2019

Yearling Coho sampling — December 2019

Submit Clean Water Act Sec. 404 Application to Army Corps of Engineers -
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Anticipated Project Timeline

launched

California and Oregon 401 Water Quahty Certification processes

2016 2017 2018 2019 2020
Board appointments/
legal, technical &
operations teams
hiring
i PacifiCorp & | Submit  FERC Board
Amended KRRC filed FERC Definite Plan of Consultants i
KHSA S|gned applications to FERC Report #l
KRRC Preliminary Design

FERC process for License Transfer

FERC process for
Llcense Surrender

e ——— T

I" Final DeS|gn

RFP Released Design- Bul|d
Baseline Monltorlng & Field Studies ""I“"

Other =\ ronmental Permlttlng

Construction Services
Solicitation & Contracting

Contractor Selection

Stakeholder Outreach & Engagement

2021 2022
- FERC: Federal Energy Regulatory Commission
National Environmental Policy Act

. NEPA:

Timing dependent on regulatory approvals
and other factors; subject to change.

Site Preparation &
Construction Activities

Dam Removal &
Environmental Restoration

Monitoring & Adaptive Management

)
e
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5 — Questions
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Thank you!

Mark Bransom, Chief Executive Officer
mark@klamathrenewal.org

p—
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KRRC Board of Directors

State of California Karuk Tribe
e Lester Snow, President e Wendy (Poppy) Ferris-George
 Leon Szeptycki,
SeFretary/Treasurer Yurok Tribe
. Mlchael Barr e Scott Williams
e Ricardo Cano
* Nancy Vogel Non-Governmental

State of Oregon

* Laura Rose Day
e Thomas (Tom) Jensen

Jim Root, Vice President e Brian Johnson

Michael Carrier
Theodore (Ted) Kulongoski
Krystyna Wolniakowski

klamathrenewal.org/about-the-krrc/leadership/
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Signatories of the Amended KHSA

As of December 31, 2016

Department of the Interior

NOAA Fisheries

PacifiCorp

California Governor

Oregon Governor

California Fish and Wildlife
California Natural Resources Agency

® N O U AWM R

Oregon Department of
Environmental Quality

9. Oregon Department of Fish and
Wildlife Department

10. Oregon Department of Water
Resources

11. Yurok Tribe

12. Karuk Tribe

13. Humboldt County
14. American Rivers
15. California Trout

16. Pacific Coast Federation of Fishermen’s
Associations

17. Institute for Fisheries Resources

18. Federation of Fly Fishers

19. Trout Unlimited

20. Sustainable Northwest

21. Klamath River Renewal Corporation
22.Salmon River Restoration Council

23. Upper Klamath Water Users Association

———
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SFPATIAL
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science for a changing world

Yurok Tribe

PRE-DAM REMOVAL TOPOGRAPHIC BASE-LINE DATA
COLLECTION ON THE KLAMATH RIVER
COLLABORATION IN ACTION

Salmon Restoration Federation (SRF) Conference
April 26, 2019

David (DJ) Bandrowski P.E. - Yurok Tribe
THE WILLIAM AND FLORA Jenny Curtis — USGS e

B KLAMATH
HEWLETT Tony Jackson, PLS - USACE e Ty
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WHAT DOES SRF 2016 AND 2019 HAVE IN COMMON?

BCONTRACTOR CHOSEN FOR REMOVAL OF KLAMATH RIVER DAMS

&

The long-term progect to remove a nuember of the Klamath Rives's hydroelect:

Posted Ape. 25, 2019 249 PM
‘osted By: Jame Parfitt

BB North Codst MAMBOLLT COUMTECALN, « Fuit

ooo T or 50
WA e B

o Thoowirions nel stem

of Polm:gW.mdM
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CLAMATH FALLS, Ore — The project to see four dams removed from along the Klamath River just entered a new phase, with the Klamath Ri

Renewal Corporation (KRRC) choosang a contractor to accomplish the task

The Klamath River restoration project 1s one of the biggest dam removal in the woeld so far, parucularly in 1e

wt of Fairf

snted more funds ence they accomplish the

KRRC. contractor Kiewit Infrastruct:

wding d, Cadifornia h

milllon for “prolinunary Services,” and will be gr

“Selecting Kiewit marks another key achievement and brings KRRC closer 10 completing the largest dam
In LLS. history.” sald Mark Bransom, KRRC Chie

il heip restore the vitality of the Klamath Rives so that it

removal and river restoration pros ascutive Officer. "Once

implemented, the projec ommunities

In the basin

Kiawit recaently completed ems cy reconstruction of the Orovills Dar ~['|Il\\ v in Butte County, Califormia —

same area ravaged by the Camp Fire in 2018, Previously, the dam had repaatedly failed to “1 11 | .

gan refeasing water again in March

&he Washington Post

Business

States, federal agencies will seek removal of Klamath dams

By Jonathan J. Cooper | AP

SACRAMENTO, Calif, — Oregon, California, the federal government and others have agreed to go forward with a

plan to remove four hydroelectric dams in the Pacific Northwest without approval from a reluctant Congress, a

The Aperl 6, 2016 sigring coretnorry in Regua, CA incheded ¢harmmen of the Yavok, Karuk and Klsnath Tribes, Govemon of CA and Of snd

spokesman for dam owner PacifiCorp said Monday. the LS. Sechtary of thve Interion Photo: Mark Lovelace

The dam removal is part of an announcement planned Wednesday in Klamath, California, by the governors of both

states and U.S, Interior Secretary Sally Jewell,



KLAMATH RIVER TOPOGRAPHIC BASE-LINE DATA COLLECTION

THE GOAL OF THIS ENTIRE PROJECT IS TO HAVE A PRE-DAM
REMOVAL FOUNDATIONAL DATA SET THAT MANAGEMENT
AND THE SCIENTIFIC COMMUNITY WILL BE ABLE TO UTILIZE
TO BETTER UNDERSTAND THE EFFECTS OF DAM REMOVAL,
TO BE ABLE TO MORE QUANTITATIVELY MEASURE
GEOMORPHIC EVOLUTION, AND TO BE BETTER EQUIPPED TO
MONITOR THE BIOLOGICAL AND PHYSICAL RESPONSE OF A
NEW FREE FLOWING KLAMATH RIVER



BACKGROUND - WHY THE NEED FOR BASELINE DATA COLLECTION

The Elwha River flows into the Strait of Juan de Fuca, carrying sediment once trapped behind dams.
The gradual release has rebuilt riverbanks and created estuary habitat for Dungeness crabs, clams,
and other species.

World's Largest Dam Removal —
Unleashes U.S. River After Century TN
of Electric Production ' W T]

As Washington State’s Elwha River runs free, a habitat for fish and wildlife is

restored.

s’ ’

BY MICHELLE NIJHUIS, FOR NATIONAL GEOGRAPHIC :USGS//’,;\ ;} Elwha River 20'!B=.‘
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PROJECT IMPLEMENTATION SCHEDULE

2016-2018
VARIOUS AGENCIES AND ORGANIZATIONS

CONTROL POINT ESTABLISHMENT (NGS, CALTRANS, ETC.)
RE-OCCUPATION IN THE KLAMATH RIVER CORRIDOR (HwWY 96 AND 169)
NEw CONTROL DEVELOPMENT FROM WEITCHPEC TO Hwy 101
CALTRANS AND BUREAU OF RECLAMATION

COLLECTION: JUNE 2018

FROM THE ESTUARY TO KLAMATH LAKE + SOME TRIBUTARIES
FUNDING FROM: USGS; NOAA; KRRC;

CONTRACT WITH USGS — 3D ELEVATION PROGRAM (3DEP)
DATA COLLECTION PERFORMED BY: QUANTUM SPATIAL INC (QSI)



PROJECT IMPLEMENTATION SCHEDULE - CONTINUED

» JuLy — SEPTEMBER 2018

» 190 MILES (ESTUARY TO IRON GATE DAM)

» YUROK TRIBE, HEWLETT FOUNDATION, AND

» US ARmY CORPS OF ENGINEERS (USACE) -

ENGINEERING RESEARCH AND DEVELOPMENT CENTER (ERDC)

» STITCHING OF THE AIRBORNE AND BOAT BASED DATA TOGETHER

» VALIDATION AND CALIBRATION OF THE TWO DATA SETS

» FINAL DIGITAL ELEVATION MODEL (DEM) OF THE KLAMATH FULL RIVER
» TBD — ANTICIPATED BY FEBRUARY 2019

» APPROXIMATELY FEBRUARY THROUGH MAY 2019
» BUREAU OF RECLAMATION — SEDIMENTATION AND RIVER HYDRAULICS (SRH)
TEAM ouT OF THE BOR DENVER TECHNICAL SERVICE CENTER (TSC)



AIRBORNE DATA COLLECTION — MAP

Klamath River 2018

LiDAR Acquisition

- Mainstem Klamath - 59 sg mi
Klamath River Tributaries - 17 sq mi

vz GMA/QSI Topobathy LIDAR
aiead Collection Area
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Project Highlights and Specifications — Topobathy LiDAR

* Acquisition Area: 40,908 contracted acres; 45,744 buffered acres (by 25m)
— Mainstem: 30,250 contracted Acres; 34,376 buffered acres
— Tributaries (4 AOls): 10,658 contracted acres; 11,368 buffered acres

* Reigl 880 Topobathy LiDAR Sensor, capable of measuring 1.5 Secchi depths
* Co-housed green and NIR lasers
* Helicopter-mounted with ABGPS/IMU

* For submerged topobathy LiDAR: Aggregate Nominal Pulse Spacing (ANPS)
of 0.70 meters (2 pulses/m?) ... QL2

* For topographic LiDAR: ANPS of 0.35 meters (8 pulses/m?) ... QL1
* Average Flight Altitude: 400 m AGL

* Field of View = 40°; Side lap of 30%

* Acquisition: June 1-14, 2018

e 433 Flight Lines anticipated (1,453 nm)

* Project Spatial Reference System: UTM Zone 10, NAD83(2011), Meters
NAVD88, Geoid 12B, Meters
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Topo-bathymetric Sensor

High Pulse Rate (up to 550 kHz)
Full waveform capable

Online waveform digitizing

1.5 Secchi Depth “depth rating”
Beam divergence

Short pulse length
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Project Deliverables — LiDAR

Topographic-Bathymetric Point Cloud

Classes (LAS Version 1.4)

Class 1 Processed, but unclassified

Class 2 Bare-earth ground

Class 3 Low Vegetation

Class 4 Medium Vegetation

Class 5 High Vegetation

Class 7 Low Noise (low, manually identified, if necessary)
Class 9 NIR points classified as water

Class 18 High Noise (high, manually identified, if necessary)
Class 40 Bathymetric Point, Submerged Topography

Class 41 Water Surface

Class 45 Neither surface nor bottom

Note: Classes 7 & 18 are included as a convenience. It is not required that all
“noise” be assigned to those Classes.
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Project Highlights and Specifications - Imagery

Imagery Area: 48,318 contracted acres; 53,957 buffered acres (by 25m)
— Mainstem: 37,660 contracted Acres; 42,589 buffered acres
— Tributaries (4 AOIs): 10,658 contracted acres; 11,368 buffered acres

* 4-band (R,G,B,NIR); 0.15 meter GSD

 ABGPS/IMU with Statistical Reports summarizing adjustments & accuracy
* No voids; Leaf-on; Cloud, cloud shadow, smoke, & haze-free

* No snow; non-flood conditions; no tide restrictions

e <302sun angle; 60% Forward lap & 40% Side lap

* Acquisition Window: June 8-13 (all but 3 coastal lines), and June 23, 2018
* 63 Flight Lines anticipated, with 1,700 exposures

* 0.15-meter Orthoimage horizontal positional accuracy £ 0.76m NSSDA 95%
confidence (0.44 RMSE) Error XY (0.30 m RMSE X or Y)

* Flight Diagram (flight lines, project boundary, image centers & IDs)
* Horizontal Spatial Reference System: UTM Zone 10, NAD83(2011), Meters
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KLAMATH RIVER MOUTH — SONAR SURVEYS




KLAMATH RIVER — BOAT BASED SONAR

N AND DF

* THE INSTRUMENTATION USED WAS AN ISS, OR INTEGRATED SURVEY
SYSTEM CONSISTING OF AN APPLANIX POS MV INERTIAL MOTION
UNIT

» GEOSWATH PLUs 500 KHz MULTIBEAM ECHOSOUNDER, AND A
VELODYNE 32E LIDAR SYSTEM.

* EACH IS FED THROUGH A HUB TO A SINGLE COLLECTION COMPUTER
RUNNING HYPACK HYSWEEP NAVIGATION AND COLLECTION
SOFTWARE AND POST-PROCESSED USING HYPACK MBMAX
PROCESSING SOFTWARE

* TRAJECTORY FILES FROM THE VESSEL MOUNTED POS MV IMU AND
FILES FROM A SERIES OF TRIMBLE R8 GNSS BASE RECEIVERS
COLLECTING SIMULTANEOUSLY ON EXISTING MONUMENTS DURING
THE SURVEY ARE POST PROCESSED USING APPLANIX POSPAC
SOFTWARE.












EXAMPLE DATA SETS — KLAMATH RIVER LIDAR DATA COLLECTION
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EXAMPLE DATA SETS — KLAMATH RIVER LIDAR DATA COLLECTION

Default
Ground

Bathymetry




EXAMPLE DATA SETS — KLAMATH RIVER LIDAR DATA COLLECTION

Default
Ground

Bathymetry




EXAMPLE DATA SETS — KLAMATH RIVER LIDAR DATA COLLECTION
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KLAMATH RIVER BOAT BASED MULTI-BEAM SONAR DATA
COLLECTION




2D HYDRODYNAMIC FLOW MODEL DEVELOPMENT

Managing Water in the West

Trinity River 40 Mile Hydraulic Model:
Update with 2016 Topography

Technical Service Center
Sedimentation and River Hydraulics Group
Technical Report No. SRH-2018-11

o X

Figure 1. The new model mesh showing the band: of smaller mesh element: along the channel margins at the upstream
end of Chapman Ranch, near Roundhouse.

| e
uU.Ss. V[)_ep}!rtment of the Interior Figure 6. Observations of water surface elevation at 5450 cfs, shown in blue, extend from Chapman Ranch to downstream

Bureau of Reclamation of Junction City.
Sedimentation and River Hydraulics March, 2018




How CAN THE DATA AND MODELS BE USED?

Discussion

schence for 2 changing workd ¢ In this report, we constructed and parameterized the S3 as the fish production model to support
N— s the Trinity River decision support system (DSS). The structure of S3 makes it a particularly useful fish
~ production model for the DSS because population dynamics are sensitive to (1) water temperature. (2)
Prepared in cooperation with ”N! U S Fish and Wildiife Service | daily flow management. and (3) habitat quality and quantity. Each of these variables are key
PR, o N o management parameters under consideration in the Trinity River Restoration Program. Furthermore. the
Apphca“on of the Stream Salmonid Simulator (S3) tO Trinity River S3 model is unique and unprecedented among detailed simulation models of fish
v opulations owing to (1) state-of-the-art sub-models forming key drivers in S3 (e.g.. hydrodynamics and
the Restoration Reach of the Tl’ lmty %OI’ Callfomla— Soal y %sg habitat models). (g))high-qualit}v' abundance estimates available for evaluatmgbmodel output. (3)
' Parametenzatlon and Calibratio

1, - calibration of the model to estimate key demographic parameters, and (4) comparison of alternative
hypotheses about the mechanisms of density-dependence driving population dynamics.

Inputs for the Trinity River S3 model were constructed from state-of-the-art models of spatially
explicit hydrodynamics (Bradley. 2016) and quantitative fish habitat relationships (Som and others,
2017). Because of their complexity and computational burden. two-dimensional hydrodynamic models
typically focus on modeling relatively short reaches of river (e.g.. hundreds of meters). For example. the
Klamath River S3 model relied on 2D hydrodynamic models for eight reaches throughout the Klamath
River. which required extrapolating habitat quantity from the 2D models to un-modeled reaches (Perry
and others. 2018b). In contrast. the SRH-2D model was applied to the entire 40-mile Restoration Reach.
providing two-dimensional hydrodynamic output for every MHU in the S3 model. Thus. extrapolation
from modeled to un-modeled habitat unifs was unnecessary. One tradeoff of constructing a
hydrodynamic model for the entire 40-mile Restoration Reach is that computational cells were larger
than those from the 2D model. a characteristic required to achieve computational feasibility. During
initial stages of model development. we worked closely with the SRH-2D modeling team to evaluate
accuracy and precision of the model to predict water velocity. a key habitat parameter. This analysis
resulted in modifications to the model to decrease cell size and increase the number of cells near the
shore to obtain sufficiently accurate depth and velocity estimates for predicting juvenile habitat

i o

We used a novel technique for estimating the habitat capacity of meso-habitat units from the
output of the SRH-2D hydrodynamic model. Often, habitat quality and quantity is measured in terms of
, : the amount of suitable habitat (e.g.. square meters. acres. or hectares). which may be quantified using
, : oy L R presence-only data with habitat suitability criteria (Som and others, 2016) or presence-absence data with
ol 2 : . o . ,&' U loglst_ic regress_ion (Tiffan and others, 3_006). Hm}fever. stan_dard models for density-depgndence use
‘,~' e o =P " 3 By A carrying capacity. nof the amount of suitable habitat. Capacity can be estimated from suitable habitat
: ' area given an estimate of the maximum density within suitable habitat. For example. Beechie and others
(2015) estimated reach-level capacity of the Trinity River by assigning different fish densities to habitat
categories with different suitabilities of depth. velocity. and cover. In contrast to this approach. the
model developed by Som and others (2018) uses continuous measures of depth. velocity. and cover
distance (i.e.. not categorized) to estimate the expected distribution of fish density given the predicted

—~

i i

mean fish density and the estimated spatial and temporal variation in density. Given that we define
capacity as the upper bound for the number of fish that a habitat unit can hold. we estimate capacity as
the 95th percentile of the distribution of fish density. as predicted by the habitat covariates.
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Previous study identified a genetic region strongly
associated with premature vs. mature migration in

steelhead and Chinook
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Chinook
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Premature:
Spring Chinook/
Summer steelhead

PM=heterozygous

MM=homozygous
mature

Mature:
Fall Chinook/
Winter steelhead

Steelhead

Chinook

Location
Eel River
Eel River
Eel River
Eel River
Eel River
Eel River
Eel River
Mew River
Mew River
MNew River
MNew River
MNew River
Siletz River
Siletz River
Siletz River
Siletz River

Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River

Eel River
Eel River
Eel River
Eel River
Eel River
Scoft Creek
Scoft Creek
Scoft Creek
Scoft Creek
Scoft Creek
Scott Creek
Scott Creek
Siletz River
Siletz River

Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River
Umpgua River

Predicted phenotype

Summer-run
Summer-run
Summer-run
SUMmMer-run
Summer-run
Summer-run
Summer-run
Summer-run
Summer-run
Summer-run
SUMmMer-run
Summer-run
Summer-run
Summer-run
Summer-run
Summer-run
Summer-run
Summer-run
SUMmMer-run
Summer-run
Summer-run

Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run
Winter-run

Top Prince et al. SNP

M
MM
MM
MM
M
MM
MM
MM
M
MM
MM
MM
M
P
MM
MM
M
MM
MM
MM
P
MM
MM
MM
M

Location

Mooksack River
Mooksack River
Mooksack River

Predicted phenotype
Spring-run
Spring-run
Spring-run

Morth Umpgua River | Spring-run
Morth Umpgua River | Spring-run
Morth Umpgua River | Spring-run
Morth Umpgua River |Spring-run

Puyallup River
Puyallup River
Puyallup River
Puyallup River
Puyallup River

Rogue River
Rogue River
Rogue River
Rogue River
Salmon River
Trinity River
Trinity River
Trinity River
Trinity River

Nooksack River
Nooksack River
Mooksack River

Mﬁiv&r
Puyallup River
Puyallup River
Puyallup River

Puyallup River
Rogue River

Rogue River
Rogue River
Rogue River
Salmon River
Siletz River
Siletz River
Siletz River
Siletz River

Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run
Spring-run

Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run
Fall-run

South Umpgua River [Fall-run
South Umpgua River Fall-run
South Umpgua River |Fall-run

Trinity River
Trinity River
Trinity River
Trinity River
Trinity River

Fall-run
Fall-run
Fall-run
Fall-run
Fall-run

Tui Prince et al. SNP

P

P
P
MM
MM
MM
P
MM
P

MM
P
P

MM
MM
P
MM
MM
P
MM

P

P



Chinook analysis was lower resolution and had
missing data in region with highest association in

steelhead
Steelhead Chinook
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Chinook analysis was lower resolution and had
missing data in region with highest association in

steelhead
Steelhead Chinook
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Higher-resolution analysis of GREBIL region In
Chinook revealed SNPs with stronger associations
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Higher-resolution analysis of GREBIL region In
Chinook revealed SNPs with stronger associations
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Chinook

Location Predicted phenotype Top Prince et al. SMNF
Nooksack River Spring-run “
Mooksack River Spring-run
Mooksack River Spring-run P
Morth Umpgua River | Spring-run
Morth Umpgua River | Spring-run
Morth Umpgua River | Spring-run
Morth Umpgua River |Spring-run
Puyallup River Spring-run
H Puyallup River Spring-run
Sprlng-run mmm&r SEring—run
Puyallup River Spring-run
Puyallup River Spring-run
Rogue River Spring-run
Rogue River Spring-run
Rogue River Spring-run
Rogue River Spring-run
Salmon River Spring-run
Trinity River Spring-run
Trinity River Spring-run
Trinity River Spring-run
—— 1100 River Spring-run
PM=heterozygous
. Nooksack River Fall-run PM
— Mooksack River Fall-run PM
MM=homozygous Mooksack River Fall-run MM
mature Puyallup River Fall-run MM
Puyallup River Fall-run MM
Puyallup River Fall-run PM
Puyallup River Fall-run MM
Puyallup River Fall-run P
Rogue River Fall-run - PF
Rogue River Fall-run MM
- Rogue River Fall-run P
Fa" run Rogue River Fall-run P
Salmon River Fall-run - PE
Siletz River Fall-run MM
Siletz River Fall-run MM
Siletz River Fall-run P
Siletz River Fall-run M
South Umpgua River [Fall-run M
South Umpgua River Fall-run PM
South Umpgua River |Fall-run MM
Trinity River Fall-run - PE
Trinity River Fall-run P
Trinity River Fall-run _
Trinity River Fall-run
PM

Trinity River Fall-run



Chinook

Location Predicted phenotype Top Prince etal. SNP  New SNP1 New SNP 2
Mooksack River Spring-run
Mooksack River Spring-run P P PM
Morth Umpgua River | Spring-run
Morth Umpgua River | Spring-run
Morth Umpgua River | Spring-run
Morth Umpgua River |Spring-run
Puyallup River Spring-run
H Puyallup River Spring-run
Sprlng-run mmvﬁr SEring—run
Puyallup River Spring-run
Puyallup River Spring-run
Rogue River Spring-run
Rogue River Spring-run
Rogue River Spring-run
Rogue River Spring-run
Salmon River Spring-run
Trinity River Spring-run
Trinity River Spring-run
Trinity River Spring-run
—— 1100 River Spring-run
PM=heterozygous
. Nooksack River Fall-run
Mooksack River Fall-run
Mooksack River Fall-run
Puyallup River Fall-run
Puyallup River Fall-run
Puyallup River Fall-run
Puyallup River Fall-run
Puyallup River Fall-run
Rogue River Fall-run
Rogue River Fall-run
- Rogue River Fall-run
Fa" run Rogue River Fall-run
Salmon River Fall-run
Siletz River Fall-run
Siletz River Fall-run
Siletz River Fall-run
Siletz River Fall-run
South Umpgua River |Fall-run
South Umpgua River |Fall-run
South Umpgua River |Fall-run
Trinity River Fall-run
Trinity River Fall-run
Trinity River Fall-run
Trinity River Fall-run

Trinity River Fall-run
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Rogue River, OR Chinook experienced a major
shift in adult migration time after construction of
Lost Creek Dam in 1977
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Genotyping Rogue River Chinook that passed
GRS during three time windows reveals
heterozygotes have an intermediate phenotype
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Thompson et al., 2019



Mid-September HP results suggest homozygous-
spring and heterozygous fish from GRS early-
October had entered freshwater earlier in the year

Homozygous spring . Heterozygous . Homozygous fall

GRS HP
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Results are further supported by
validation in the South Fork Trinity

South Fork Trinity

Sandy Bar Weir 5/15/1992 S5 Sandy Bar Weir  10/14/1993 FF
Sandy Bar Weir 5/21/1992 S5 Sandy Bar Weir  10/15/1993 FF
Sandy Bar Weir 5/25/1992 S5 Sandy Bar Weir  10/15/1993 FF
Sandy Bar Weir 6/12/1993 S5 Sandy Bar Weir  10/15/1993 FF
|Sand}rr BarWeir 6/21/1993 S5 Sandy Bar Weir  10/15/1993 FF
Sandy Bar Weir 6/25/1993 S5 Sandy Bar Weir  10/24/1993 FF
Forest Glen 6/25/1993 S5 Sandy Bar Weir  10/25/1993 FF
Sandy Bar Weir 6/26/1993 S5 Sandy Bar Weir  10/25/1993 FF
Sandy Bar Weir 6/28/1993 S5 Sandy Bar Weir  10/28/1993 FF
Sandy Bar Weir 6/29/1993 S5 Sandy Bar Weir  10/29/1993 FF
Sandy Bar Weir 6/29/1993 S5 Sandy Bar Weir  10/29/1993 FF
Forest Glen 6/30/1993 S5 Sandy Bar Weir  10/29/1993 FF
Forest Glen 7/2/1993 5SS Sandy Bar Weir  10/29/1993 FF
Sandy Bar Weir 7/3/1993 SS Sandy Bar Weir  10/29/1993 FF
Sandy Bar Weir 7/6/1993 5SS Sandy Bar Weir  10/30/1993 FF
Sandy Bar Weir 7/7/1993 SS Sandy Bar Weir  11/2/1993 FF
Sandy Bar Weir 7/8/1993 5SS Sandy Bar Weir  11/3/1993 FF
Sandy Bar Weir 7/8/1993 SS Sandy Bar Weir  11/3/1993 FF
Sandy Bar Weir 7/13/1993 S5 Sandy Bar Weir  11/3/1993 FF
Sandy Bar Weir 7/16/1993 S5 Sandy Bar Weir  11/3/1993 FF
Sandy Bar Weir 7/20/1993 S5 Sandy Bar Weir  11/3/1993 FF
Sandy Bar Weir 7/23/1993 S5 Sandy Bar Weir  11/11/1993 FF
Sandy Bar Weir 7/23/1993 S5 Sandy Bar Weir  11/12/1993 FF
Sandy Bar Weir 7/24/1993 S5 Sandy Bar Weir  11/12/1993 FF
Sandy Bar Weir 7/24/1993 S5 Sandy Bar Weir  11/12/1993 FF
Sandy Bar Weir 7/24/1993 S5 Sandy Bar Weir  11/14/1993 FF
Sandy Bar Weir 7/24/1993 S5 Sandy Bar Weir  11/14/1993 FF
Sandy Bar Weir 7/24/1993 S5 Sandy Bar Weir  11/15/1993 FF
Sandy Bar Weir 7/31/1993 SF Sandy Bar Weir  11/15/1993 FF



And In the Chehalis River, WA
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Wild spring-run Chinook have been extirpated
from most of the Klamath basin

A Relevant dams

@ Arch. site

Shasta: spring
Chinook extirpated in
1930’s

Scott: spring Chinook
extirpated in 1970’s

Salmon: spring
Chinook still present

Thompson et al

., 2019



Number of Spring Chinook
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Analysis of carcass samples reveals spatio-
temporal differences between spring-run and fall-
run Chinook in the Salmon River
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Analysis of out-migrating smolts may be useful for
monitoring the spring-run allele frequency in the
Salmon River

Preliminary analysis:
116 smolt samples collected in 2017

Spring-run allele frequency: 0.2
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Chinook
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Klamath dam removal provides an unprecedented
opportunity to restore Chinook to historical habitat

A Relevant dams

@ Arch. site

Thompson et al., 2019



Historical documentation and genetic analysis of

archaeological samples supports the presence of

both spring-run and fall-run Chinook above the
Klamath dams

2 homozygous spring
3160-3110 BC,

2 homozygous spring ;
AD 1390-1860 (one sample’s date unknown)
b c
_ ,f i d

50km

2 homozygous spring
450 BC-20th century 3 homozygous fall
= AD 1860-20th century

A Relevant dams
@ Arch. site

Thompson et al., in prep



Where are spring alleles for restoring upper
Klamath spring Chinook going to come from?

A Relevant dams

@ Arch. site

Thompson et al., 2019



Can heterozygotes serve as a reservoir of spring
alleles to restore spring Chinook after dam
removal?

Shasta: spring
Chinook extirpated in
1930’s

Scott: spring Chinook
extirpated in 1970’s

A Relevant dams

@ Arch. site

Thompson et al., 2019



Genotyping smolt samples across juvenile
outmigration period reveals spring allele
frequencies Iin the Salmon, Shasta, and Scott

Location Date spring Number Spring-run allele

Chinook last of frequency
observed samples
Salmon present 116 0.20
Shasta 1930’s 440
Scott 1970’s 432

A Relevant dams

@ Arch. site

Thompson et al., 2019



Spring alleles have not been maintained in the
Shasta or Scott at frequencies that could be used
to restore upper Klamath spring Chinook

Location Date spring Number Spring-run allele
Chinook last of frequency
observed samples

Salmon present 116 0.20

Shasta 1930’s 440 0.002
(~20 hetslyear)

Scott 1970’s 432 0.002
(~20 hetslyear)

A Relevant dams

@ Arch. site

Thompson et al., 2019



Summary and conclusions

Higher-resolution analysis of GREBIL led to discovery of new
markers for migration type

Validation of markers indicates they appear to be diagnostic for
spring vs. fall migration type

Markers could be useful for monitoring and informing spring-run
management in the in the Salmon River

Both spring and fall Chinook were found in ancient samples from
above Klamath dams

Heterozygotes are not acting as reservoirs of spring-run alleles
In tributaries that have lost the spring-run phenotype

The decline of spring-run Chinook can make restoration
challenging even when the spring-run still exists in the basin
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Evolutionary analysis of coastal Chinook reveals
monophyletic origin for spring-run alleles
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Recolonization Potential of Coho Salmon in
Tributaries to the Klamath River Post-Dam Removal

Max Ramos &
Dr. Darren Ward
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Beaver and Bogus creeks







Habitat Type
. HGR
LGR
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HGR = High Gradient Riffle
LGR = Low Gradient Riffle
Pool Dam = Dammed Pool

Pool Scour = Scoured Pool

Run_Glide = Run or Glide



HLFM
Structure

Habitat type

Cascades

Rapids

Riffles

Glides

Trench pools
Plunge pools
Lateral scour pools
Mid-channel scour pools
Dammed pools
Alcoves

Beaver ponds
Backwater pools

Juvenile density (#/mz) by habitat type

Summer




Jenny

Fall

Shovel




IP Model Structure

1. Mean Annual Flow (m3/s)
2. Instream Channel Gradient (%)

3. Valley Width Index

*Geospatial Information System (GIS) based approach
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Shovel Creek
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Mean Annual Flow(f;) > = (f.* D)
= (fy, * V,)
Ps = (Fg ™ Gy)
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Mean annual stream flow (m?/s)

Valley Width Index (f,) Channel Gradient (f)

Calibrated valley-width index Channel gradient (%)
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Snorkel Surveys — Summer 2018
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Conclusions

Model Ranking Jenny Creek Fall Creek Shovel Creek

IP Model
Factor Jenny Creek Fall Creek Shovel Creek
Summertime Juvenile
Rearing Temperature
Barriers to Summertime
Juvenile Fish Passage

Barriers to Adult Fish
Passage



Planned Work - Summer
2019

1. Stable isotope sampling
a. Macroinvertebrates
b. Riparian arachnids
c. Riparian vegetation
d. Resident fishes

2. Resident fish sampling
a. Snorkel surveys
b. E-fishing
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Introduction

e The Yurok, Hupa, Karuk, Shasta, Modoc, Klamath, and Yahooskin: Native
American Tribe’s located within the Klamath River basin. We depend on:

— Chinook Salmon (Onchorhynchus tshawytscha)
— Coho Salmon (Onchorhynchus kisutch)

— Green sturgeon (Acipenser medirostris)

— Steelhead (Onchorhynchus mykiss)

III

— Pacific Lamprey “eel” (Entosphenus tridentatus)

— Eulachon (Thaleichthys pacificus)

for ceremonial, subsistence, and commercial purposes.




Food sovereignty - “the right of a community to define its
own diet and therefore shape its own food system with access
to all the historical and traditional food.”




Traditional Ecological Knowledge (TEK)

We can see the natural world as something to exploit (dams, mines, fracking)...



Traditional
Ecological
Knowledge

Place
Based
|dentity

Western
Science



Why are Pacific lamprey ecological important to the Klamath River Basin?

Klamath River Basin supports highest number of lamprey species in the world.

Historically, the Pacific lamprey total biomass is estimated as the largest fish biomass of any species
residing in the Klamath River Basin.

Pacific lamprey serve as a buffer species to ESA protected migrating salmon in the Klamath River estuary.

Lamprey have significantly higher lipid content than salmon providing high caloric value per unit weight
for predators.

Spawned out lamprey contribute essential biomass of marine-derived nutrients and organic matter to
the food web of headwater streams.

Food source for marine mammals, bear, blue heron, mink, fishers, river otters, hawks, eagles, osprey,
cutthroat & rainbow trout, mergansers, kingfishers, seagulls, terns, and emerging spring salmon and
lamprey ammocoetes.



Indicator species of ecosystem health as they live 4 to 7 years in sediment.

Larval lamprey burrowing and feeding tillage act as ecosystem engineers by softening and oxygenating
stream sediment.




Why are Pacific lamprey culturally important to the Klamath River Basin?

Above: Hooking
“eels” at the river
mouth.

Left: Flattened
lamprey ready for
the smokehouse.

Yurok with Klamath River Pacific lamprey
“eels” and green sturgeon (circa 1920’s).



Cultural impacts
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Cultural impacts

Yakama tribal member cooking Pacific
lamprey in Columbia River Basin.




Klamath River Basin Pacific lamprey freshwater habitat

Populations are at extinction
risk due to passage barriers,
habitat disturbance and loss,
and are intermediate to
intolerant of pollution.

e . T T T T Y
RIVER WATER in the KLAMATH RIVER IS UNSAFE
AND CAN HARM PEOPLE & KILL PETS

Levels of blue-green algse {mécrocystin)
warn detacted ot S TIMES the Public Health advisory thresholds [09/1/2017)

STAY OUT OF THE WATER UNTIL FURTHER NOTICE.
DO NOT TOUCH algae scum in the water or on the shore

DO NOT let PETS drink, or go Into the water, or lick scum from fur.

DO NOT CONSUME FISH ORGANS- Wash fillets with drinking water
@ DO NOT EAT SHELLFISH from these waters they concentrate toxins

DO NOT USE THIS WATER for rinsing fish, drinking, or cooking.
Bolling will not make the water safe

Call your doctor or veterinarian if you or your pet get sick after going in the water

FOr e irfaTration centaes vt a
At Caats Seponat Woter Onad oy Comred Bosnd ot TOT-SA2220 o Yerok Tiide Eravon nsavial Paagusn (M00) 9514543
TR water bady b belng monmored by e Yoroh Trine; this netice wil b reviied @ condtSons chengs.



What we did not know about Klamath River Pacific lamprey

Verification of ocean- and river-maturing ecotypes? Very limited amount of evidence.

The relationship between ecotype diversity, relative run-timing and genetic stock structure of Klamath
River Pacific lamprey was not known.

No abundance estimates.

Likely due to:

(i) Large scale lamprey harvest typically only occurs in Native American subsistence fisheries,

(ii) not a priority for fisheries management, and

(iii) no commercial fishery exists.



Obijectives

My research encompassed three phases:




Field Methods
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Laboratory and Molecular Methods
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DNA extraction was accomplished using the Chelex 100 method (denaturing protocol).

Genotyping was conducted using the Genotyping-in-Thousands by sequencing (GT-seq) method
(Campbell et al. 2015), allowing the simultaneous genotyping of thousands of individual samples at
hundreds of SNP loci using barcoding and lllumina sequencers.

A SNP panel of 308 SNP loci was selected to be representative of neutral and adaptive genetic loci
across the geographic range of Pacific lamprey.



Trait Results

Lamprey egg mass variation collected on same day (April 14, 2017), range 1.6 g (0.25% GSI) [third
from left] to 22.7 g (5.62% GSI) [second from right], displaying a 1,400% variation in egg mass.

Female Pacific lamprey gut cavity prior to egg excision. The
individual represents the largest egg mass of the study (25.5 g).



Initial observations
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Mean egg mass (g) of Pacific lamprey at-entry to the Klamath River from June 2016 to May 2017. The
width indicates the probability density, the horizontal bar is the median, the box 25% and 75% quantiles,
and whiskers 5% and 95% quantiles. Months sharing the same letter were not significantly different
(>0.05) for egg mass in post-hoc comparison using Tukey’s HSD test.



The decoupling
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Total length-egg mass relationships for at-entry Fall Klamath River Chinook Salmon, Aug-Oct 2009
(open triangles) showed a significant relationship , as did Aug-Oct 2010 salmon (solid circles, dot-
dash regression line) , as compared to at-entry ocean-maturing Pacific lamprey (open diamonds,
dashed regression line) displaying a decoupling of total length-egg mass relationship.



Genetic Results 0
GLM-MLM °
| 8
)
%

General Linearized Model p-values for associations between egg mass and each of the 308 SNP loci
genotyped, using the software TASSEL. P-values are ordered from smallest to largest. The horizontal
dotted line indicates the critical value as determined using the false discovery rate procedure
described by Benjamini and Yekutieli (2001) (critical value = 0.006).



A pattern emerges

Lamprey egg mass segregated
by ecotype, based on
genotype-phenotype egg
mass association, versus day
of year.

Ocean-maturing
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Filled circles = river-maturing
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Reqgression analysis
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Multiple linear regression fits for the best model (i.e., lowest AIC and BIC) that predicts In(egg mass)
for Pacific lamprey, based on at-entry day and ecotype (r*2 = 0.683, p < 0.001). River-maturing
ecotypes represented with dark circles, and ocean-maturing ecotypes with open triangles.



Loci at bottom were found to be linked in two groups.

Linkage Group D Linkage Group B Dupljcate
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Epistasis refers to genetic
interactions in which one
gene locus masks or
modifies the phenotypic
effects of another gene
locus.

Under duplicate dominant
epistasis, a dominant allele
at either of two loci can
mask the expression of
recessive alleles at the two
loci.

A locus (plural loci) is a fixed location on a chromosome (e.g., position of a gene).



Phenotype-genotype
association mapping identified
fifteen SNPs with significant
associations to egg mass,
fourteen occurring on two
linkage groups.
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Duplicate
Dominant
Epistasis

Etr_3383

River-maturing is
considered dominant
and develops when
genes in both linkage
groups are homozygous
dominant (red) or
heterozygous (orange).

Ocean-maturing is
considered recessive
and only develops when
genes in linkage group B
and D are homozygous
recessive (yellow).

Assignments are based
upon one locus from
linkage group D
(Etr_2878) and one
locus from linkage group
B (Etr_2791).



Inheritance model support

1). Egg mass associated loci only explained about 39% of the variation in egg mass, indicating limited
support for a model of additive genetic variation.

(iii) Duplicate Dominant Epistasis (Etr_2791, Linkage Group B and Etr_2878,

Linkage Group D)
One river allele
Phenotype OBOBODOD (Osor Op)
Ocean-maturing 26 5
River-maturing 11 50

Proportion correctly classified: 0.83



Duplicate dominant epistasis

Egg Mass (g)

25

20

10

Duplicate Dominant Epistasis

Ocean-Maturing (oBoBoDoD) River-Maturing (OB or QD allele)

Genotype

The difference in egg mass means is not
chance, but is likely due to an epistatic
difference [t(65.64) = 6.90, p < 0.001].

v 4

Ocean-maturing 30 1
River-maturing 31 30
Proportion correctly classified: 0.65

(iii) Duplicate Dominant Epistasis (Etr_2791, Linkage Group B and Etr_2878,
Linkage Group D)

One river allele

Phenotype OBOBODOD (O or Op)
Ocean-maturing 26 5
River-maturing 11 50

Proportion correctly classified: 0.83



Phenotype-genotype association mapping - Part 11

Significant associations
between total length and
eight loci, including six loci

occurring on linkage group A.
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Conclusions

(1) We identified the genetic basis of maturation ecotypes as polygenic, involving two
unlinked gene regions (linkage groups B and D), and further found that the effects of the two
gene regions did not appear to be additive but instead had complex interactive or
epistatic relationship.

(2) We found that Klamath River Pacific lamprey are panmictic at neutral loci indicating that
maturation ecotypic diversity exists within a single population, presumably caused by
Interbreeding between hold-over river-maturing and current year and ocean-maturing
ecotypes.

(3) Our analysis indicates river- and ocean-maturing ecotypes initiate freshwater migration
simultaneously with each other and co-occur at-entry on a nearly year around basis, with
peaks in abundance from late-winter to early-spring.



Hypothesized ecotype strateqies

Year 1 Year 2
Winter | Spring | Summer | Fall | Winter | Spring | Summer
River-maturing entry hold spawn
Ocean-maturing entry spawn entry spawn

** We found that Klamath River Pacific lamprey are panmictic at neutral loci indicating that maturation ecotypic
diversity exists within a single population, presumably caused by interbreeding between hold-over river-maturing
and current year and ocean-maturing ecotypes.



Management implications

(1). For conservation planning, the findings indicate that the river-maturing ecotype carries
standing genetic variation capable of producing both ecotypes (e.g., both dominant and recessive
alleles), while the ocean-maturing ecotype carries a single allele (e.g., recessive only).

(2). Therefore, when assessing stream restoration projects for lamprey, the river-maturing
ecotypes could perhaps be prioritized as they contain the genetic diversity capable of producing
both ecotypes (i.e., heterozygosity), whereas the ocean-maturing ecotypes do not.

(3). The Klamath River Pacific lamprey appear distinctive, both genotypically and phenotypically. |
recommend distinguishing the river-maturing and ocean-maturing ecotypes of Pacific lamprey by
adopting the names ke’ween and tewol, respectively, using terms from the Yurok language, in
recognition of the importance of Pacific lamprey to Pacific Northwest fishing tribes.
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Scott River Westside Planning Project Team:

e Scott River Watershed Council (SRWC) - Erich Yokel, Charnna Gilmore & Betsy Stapleton
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e (Cascade Stream Solutions — Joey Howard, PE
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Project Goal: Restoration of critical habitats for
vear round juvenile coho salmon (O. kisutch)
rearing in the Scott River Watershed




Scott River - Klamath Basin

Iron Gate Dam

Scott River
Watershed

Scott River Watershed:

e 813 square miles
e Contributes 5% of Klamath runoff

* 63% Private Land and 37% Federally
Managed Land

Scott River Supports a significant
population of wild SONCC coho
salmon in the Klamath Basin



Project Objectives:

* Prioritize tributaries and reaches for restoration planning
* |dentify discrete sites with high restoration potential

Restoration Objectives:

* Increase surface water and groundwater elevation
* Restore floodplain connectivity

* Enhance stream complexity




Scott River Landowner and Community Outreach Efforts

Majority of critical habitat
for coho salmon is located
on private property

Successful restoration
requires community buy in

TAC meetings — 14 meetings
Webinars — 5 webinars
Landowner letters — 104 letters
Stakeholder meeting — 2 meeting by invitation
SRWC Community Meeting — 2 presentation
SRWC presentation at Scott Watershed
Informational Forum

Individual landowner meetings




Historic Legacy Effects Have Significantly Reduced
Stream Complexity and Floodplain Connectivity

4 e Beaver harvest for fur trade

* Gold mining — placer, hydraulic and
dredging

. * Development of land for agriculture

» Stream channelization, straightening
and clearing for flood control

* Upslope road building and timber
harvest




Results of Historic Legacy Effects

* Loss of historic wetlands and floodplains

e Reduction in condition of the riparian forest ecosystem
* Incision of stream channels

* Reduction in occurrence of floodplain inundation

* Reduction in occurrence and volume of pool habitat
* Altered hydrologic regime




Collect Existing Data

e State and Federal Coho Recovery Plans
e Historic aerial images

* Water quality and physical habitat data
e Coho salmon distribution data

Recovery Plan for SONCC Coho Salmon -Highest Priority Recovery Actions
Increase beaver abundance

Construct off channel-ponds, alcoves, backwater habitat, and old stream oxbows
Restore natural channel form and function
Remove, setback, or reconfigure levees and dikes
Increase instream flows
Improve irrigation practices
NOAA, 2014



Key Streams and Rivers — CDFG Recovery Strategy & Tributaries with high Intrinsic Potential —= NMFS Recovery Plan

Key Streams and Rivers (CDFG, 2004)

Key Populations to Maintain or Improve

Sites to Establish Populations

Mill Creek (near Scott Bar)
Wooliver Creek
Kelsey Creek

Canyon Creek
Shackleford Creek
Mill Creek

Patterson Creek

Etna Creek

French Creek

Miners Creek

Sugar Creek

South Fork Scott River
East Fork Scott River
Big Mill Creek

Tompkins Creek
Kidder Creelk
Boulder Creek

Tributaries with high IP reaches (IP > 0.66) (NMFS, 2014)

Shackleford Creek Boulder Creek

Mill Creek Kidder Creek

French Creek Noyes Valley Creek

South Fork Scott River Moffett Creek

Sugar Creek Canyon Creek

Big Mill Creek Kelsey Creek

East Fork Scott River Mill Creek (near Scott Bar)
Patterson Creek Tompkins Creek

Wildcat Creek Wooliver Creek

Etna Creek

References:

California Department of Fish and Game. 2004. Recovery strategy for California coho salmon. Report to the California Fish

and Game Commission. 594 pp.

National Marine Fisheries Service. 2014. Final Recovery Plan for the Southern Oregon/Northern California Coast
Evolutionarily Significant Unit of Coho Salmon (Oncorhynchus kisutch). National Marine Fisheries Service. Arcata, CA.



Scott River Westside Planning Project
Coho Distribution - 2010 Lidar Extent

Utilize 2010 LIDAR DEM in ArcGIS to develop
products for analysis:

* Digitize stream layer - 32 Streams in study area
 Use RBT to create inundation layers

e Generate riparian canopy height DSM

These geospatial products were used to
characterize the stream and riparian condition
leading to scoring and ranking of individual
reaches.

Coho Distribution — CalFish, 2012
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Scott River Westside Planning Project
River Bathymetry Toolkit - Inundation Model

* River Bathymetry Toolkit (RBT)
used in ArcGIS 10.1 to create |
detrended DEM from 2010 Lidar =
bare earth DEM

* RBT used to determine |
inundation area for various ) —
water levels (0 mand 0.5 m—2.5 7

m) /

L
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Legend
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3rd
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Planning Tier
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Stream Reach Prioritization

Thirty Two(32) streams in Study Area
Parsed into 257 reaches

Seven (7) Tier 1 Streams and Six (6)
Tier 2 Streams

The Thirteen (13) Tier 1 and Tier 2
streams contain 158 reaches



For Each Tier 1 and 2 Stream Reach
Determine:

Coho salmon utilization — Adult Spawner Density
Stream Gradient

Connectivity during base flow of average water year
Riparian Canopy Height and Density Score
Stream Confinement Score



Scott River coho redds per mile - 2016
quantile classification

Adult coho salmon

R L spawning ground surveys
- P g e JE s 2001 - 2016
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1st Quantile

2nd Quantile

2004 2007

2010

2016

Lower Mill Creek (Shackleford)
Lower Miners Creek

Lower Mill Creek (Shackleford)
Shackleford-Mill Creek
Mid French Creek
East Fork above Grouse Creek

Lower Sugar Creek
Lower Patterson Creek
Lower Kidder Creek
Lower Mill Creek (Scott Bar)

Lower French Creek
Upper Patterson Creek
Mid Patterson Creek

Lower Mill Creek (Shackleford)
Shackleford-Mill Creek
Mid French Creek
Mid Sugar Creek

Lower Mill Creek (Shackleford)
Lower Miners Creek

Shackleford-Mill Creek
Mid French Creek
East Fork above Grouse Creek

Lower Sugar Creek
Lower Miners Creek
Shackleford Creek
Lower French Creek Lower Patterson Creek
Upper Patterson Creek Etna Creek below Diversion Dam

Lower Etna Creek

Lower Sugar Creek
East Fork above Grouse Creek
Lower Kelsey Creek
Etna Creek below Diversion Dam

Lower Sugar Creek
Mid Sugar Creek
Mid French Creek

U.S. Y
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SERVICE
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Scott River - Surveyed Reaches with Highest Coho Redd Density

Reach

Total Points

2004 - 2016
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Stream

Lower Mill Creek (Shackleford)

8

Mid French Creek

Lower Miners Creek

Lower Sugar Creek

Shackleford-Mill Creek

East Fork above Grouse Creek

Lower French Creek

Lower Patterson Creek

Mid Sugar Creek

Upper Patterson Creek

Etna Creek below Diversion Dam

Lower Kidder Creek

Lower Mill Creek (Scott Bar)

Mid Patterson Creek

Lower Etna Creek
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Scott River - Surveyed Reaches with Highest Coho Redd Density

2004 - 2016
snd'f’"’w:c'{
%
o
o>
pcan‘/
C(
"N po“‘f. 4
doe*/
L
{ / {
s/
I
|
| -~
4 a@’,\ &
N e ] 3
Legend ” ) ) ¥
s o ' W ]
core <
i s\“"/ ;
— 4
— 1 -2 :
Stream

VIS
L

0 15 3 B Miles
4 E Yokel - 0/6/2018 B




Stream Profile - Scott River

Stream Gradient im0

Stream Profile - French Creek

Legend
Stream Gradient
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Stream Connectivity During
the Base Flow Period of an
Average Water Year

5
_J

Disconnected reaches identified by
aerial images and ground truthed

Scott River Westside Planning Project

Average Year Base Flow Stream Connectivity
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Raster math used to calculate
riparian height using the LIDAR
bare earth DEM and first return
DSM

Canopy Height Class Vegetation Type

0-3ft Grass - Small Shrubs

3-15ft Small Shrubs - Large Shrubs
15-55 ft Deciduous Trees

=55 ft Large Deciduous Trees - Conifer Trees

Classify Canopy Heights

Legend
Canopy Height
0-3ft
3-151t
| 15-55 ft

55
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Riparian Canopy

Ri pa ri a n Ca n O py SCO ri n g Percent of Ifloodplain Area with Canopy Height Greater than 15 ft

For each reach the percent of the area with
canopy height greater than 15 ft was
calculated

The values where classified and scored

Canopy > 15 ft Riparian Score
0.52-0.85 1
0.26-0.51 2
0.10-0.25 3
Legend
0.0-0.03 4 Percent Canopy > 15 ft

0-009

0.10-0.25
w— (.26 - 0,51
w—0.52 - 0.85

A = 0 15 3 6 Miles
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Stream Confinement - Floodplain Connectivity

Determination of Stream Confinement
Determine width of Water Level 0.0 m for stream
Determine width of Water Level 1.0 m for reach

Calculate ratio of 1.0 m width to 0.0 m width for reach

1.0 m/ 0.0 m width Status Score
=10 Unconfined 1
10-5.01 Partially Confined 2
5-2.01 Moderately Confined 3
2-1 Confined 4

0 150 300 600 Feet
| ey i M) [ M I Y |

A |

Scorr Riveg
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Current Stream Confinement - Ranking

Legend
Stream Confinement
Unconfined

Partially Confined
Moderately Confined
e Confined

Stream Confinement Score
Unconfined 1
Partially Confined 2
Moderately Confined 3
Confined 4
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(Confinement + Riparian + Water at Base Flow) = Total Score

Water Present at Base Flow

Legend
(Conf. + Rip. + H20) Score
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Concept:

It is potentially easier and more cost effective to increase the
stream’s water surface elevation and/or connectivity to existing
low lying areas of the floodplain than it is to decrease the ground
elevation of the floodplain.

-




Potential Restoration Approaches

* Increase water surface elevation with instream structures — e.g. Beaver Dam Analogue

* Excavate and grade floodplain to connect existing off channel features or create feature

* Promote floodplain connectivity and stream aggradation by increasing in channel
roughness — e.g. Large Woody Debris loading







Mid French Creek - FRGP Side Channel
Fish Sampling_ Locations - 1/31/2019
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»
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Engineered Log Jams — French Creek Accelerated Wood Recruitment — Patterson Creek
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Scott River Westside Planning Project
- ial Sites - Planning Ste
Total Number of sites = 46
High Risk Sites = 3
Reference Sites =4
Ongoing Implementation = 1
Funding Proposal Submitted =5

Legend

Potential Sites
Status

®  Potential Site
®  Tempiate Site
®  Current Implementation
Proposal Submitted
®  High Risk Site
——— Stream
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Reference Site
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Potential Site

.
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Legend

® Potential Sites
— Stream

Stream Clip Boundary

1‘ 1993 DOQQ
-

; 4 800 Feet
Seort RIVER & vokel -8/17/2017




Initial Scoring of Identified
Potential Sites

Four Parameters Scored:
1) Water Presence during base flow period of summer

2) Coho Presence
3) Potential Site Inundation Area
4) Riparian Condition and Density



Determine inundation area and
canopy height for all identified
potential sites

Inudatin Area - 1 and 1.5 m

Py F.d

Scott River Westside Planning Project
Classified Canopy Height - 1.5 m Inundation
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Potential Sites - Planning Teir
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Potential Sites in Reaches with

Identified High Density of Coho Spawning

Twenty Four Potential Sites

are located in Reaches with Documented
Historic High Density Coho Spawning

Tributaries w/ Potential Sites in Reaches
of Historic High Density Coho Spawning

Shackleford Creek

Mill Creek
Legend
o | Patterson Creek
(Conf. + Rip. + H20) Score Et n a C ree k

— 0.4

French Creek
Miners Creek

East Fork Scott River
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Potential application to Klamath tributaries
behind the dams

* Collate existing water quality/physical habitat
and biological data

 Utilize existing LIDAR DEMs (Oregon) and/or
acquire LIDAR DEM to develop inundation
model and geospatial products %

e Utilize LIDAR DEMs to determine stream
gradient and confinement and riparian
condition

 Classify, score and rank

Dave Herlng. National Park SerV|ce



For Full Report see www.scottriverwatershedcouncil.com

;A Scott River Watershed Council  oourenom
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French Creek Habitat Enhancement Project |

1 Scott River Westside Planning Project

SRR Youth Environmental Summer Studies -YESS |
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BDA Coho Salmon Monitoring Report

b Click here to see our 2018 Year in Review newsletter!
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