MARSHALL RANCH FLOW ENHANCEMENT PROJECT

Pond Planning and Groundwater Recharge Workshop and Field Tour Saturday, August 17, 2019 • Beginnings Octagon, Briceland

PROJECT GOAL – DELIVER 50 GALLONS PER MINUTE OF FLOW TO REDWOOD CREEK JULY - NOVEMBER

~50 gal/minute flow in creek

Zero flow conditions occurring for ~3 summer months during typical dry season

STORAGE POND LOCATION

PROJECT DESIGN OVERVIEW

- 16 million gallon pond
- Input from rainwater catchment and diversion during wet season
- Managed outflow to Redwood Creek
- Gully remediation in adjacent tributaries

FLOW AUGMENTATION DELIVERY POINT INTO REDWOOD CREEK

GEOMORPHIC ASSESSMENT

- Identify and characterize site geomorphology and potential hazards
- Assess risks associated with potential hazards
- Support opportunities and constraints assessment
- Inform project designs

GEOMORPHIC ASSESSMENT

Assessment Approach

- Topographic survey integrated with 2007 NCALM LiDAR
- Existing data review
 - Geologic mapping (McLaughlin et al. 2000 - USGS Miscellaneous Field Studies MF-2336)
 - Geomorphic/landslide mapping (Spittler 1984 - DMG Open-File Report 84-10)
 - Historical aerial photos
 (1942, 1947, 1954, 1963, 1965, 1984, 1988, 1996, 2000, 2005, 2009, 2010, 2012, 2014)
- Geomorphic mapping and site assessment
- Geotechnical investigation

GEOTECHNICAL INVESTIGATION

- Three deep (~50 ft) geotechnical borings on Qt₂
- Three ~10 ft deep test pits on Qfp2
- One ~10 ft test pit on Qt₂
- Six groundwater wells with data loggers

GEOTECHNICAL INVESTIGATION

Geotechnical borings on Qt₂

- 8-19 ft deposit of silt with sand (overbank deposit)
- Approximately 8 ft fining upward deposit of silty sand with gravel (channel lag fining upward into overbank deposit)
- Fractured siltstone shale bedrock 16-27 ft below ground surface (629-633 ft elevation)
- Hydraulic conductivity ~3x10⁻⁷ to 8x10⁻⁶ cm/sec (very slowly permeable)

HYDROLOGIC EVALUATION

FILLING RESERVOIR:

- Determine minimum annual precipitation
- Data sources:
 - Mattole Restoration Council
 - PRISM

• 5th percentile = 45"; we are using 48"

Briceland Annual Precipitation (interpolated from PRISM)

HYDROLOGIC EVALUATION

SOURCE TO FILL RESERVOIR	POTENTIAL PRODUCTION (MILLION OF GALLONS)	
Direct Rainfall	6	
Sheet Flow from Hillslope (2.5 acres, C=0.4)	1.3	
Diversion from Eastern Tributary (20 acres, C=0.2)	1.1	
Diversion from Western Tributary (20 acres, C=0.2)	5.2	
Diversion from Redwood Creek (60 gpm for 90 days)	7.8	
Total	21.4	

DESIGN ALTERNATIVES

- Up to ~21.5 million gallon pond
- Input from multiple sources
- Outflow to filtration/cooling gallery, then to Redwood Creek
- Passive or managed outflow?
- Gully remediation in adjacent tributaries

DESIGN ALTERNATIVES

POND VOLUME (MILLIONS OF GALLONS)	POND VOLUME MINUS EVAPO-RATION LOSS (MILLIONS OF GALLONS)	FLOW BENEFIT WITH MECHANIZED OUTFLOW VALVE, ASSUMES 5 MONTH RELEASE TIME (GPM)	FLOW BENEFIT WITH PASSIVE OUTFLOW, ASSUMES 8 MONTH RELEASE TIME (GPM)	COMMENTS
6.0	4.0	19	12	Fills with rainfall only
8.5	5.7	26	16	Fills with rainfall, hillslope, and eastern tributary
13.5	9.0	42	26	Fills with rainfall, hillslope, eastern tributary, and western tributary
16.3	10.9	50	31	Fills with rainfall, hillslope, eastern tributary, and water pumped from Redwood Creek
21.5	14.3	66	41	Maximum capacity based on site and hydrologic constraints

EXPECTED STREAM FLOW RESULTS

Graphic representation of post-project hydrograph hydrograph

ADDITIONAL PROJECT COMPONENTS

- Water Rights need appropriative water right to fill pond from diversion
- This project fits into broader conservation efforts on the Marshall Ranch with the entire ownership under protection with a Conservation Easement
- Operations and Maintenance Solar array added to project to cover long term O&M
- Emergency Fire Suppression Integration Working with BVFD to include fire suppression component additional tanks and pump system included in overall plan; will seek funding from additional sources

CURRENT PROJECT STATUS

- Currently developing 65% engineering design plans; CEQA permitting process also underway
- Apply for construction/implementation grant funding in September
- Start of construction target date: June 2021

GENERAL POND PLANNING AND DESIGN CONSIDERATIONS

- Choosing pond location:
 - Gentle/stable terrain
 - No drainages or wetlands

Sizing pond

- Estimate water use
- Site constraints
- How to fill pond
- Lined or unlined?

• Permitting:

- typically only need Grading Permit from Humboldt County
- Issues with cannabis

