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Session Coordinators: Monty Schmitt, The Nature Conservancy; Matt
Clifford, JD, Trout Unlimited; and David Dralle, Ph.D., U.S. Forest Service,
Pacific Southwest Research Station

Groundwater contributions to instream flows, particularly in the dry season, are essential for the restoration of rivers
and the recovery of salmonid populations. Historic logging practices, changes in land use, the legacy of fire exclusion,
and increasing well diversions have all contributed to depleted streamflows. Efforts to manage groundwater resources,
like the Sustainable Groundwater Management Act and recent efforts by county planning departments, have yet to
address the complex technical and regulatory issues associated with avoiding or mitigating existing cumulative
impacts and permitting for new wells. Additionally, existing state-wide legislation manages groundwater only in large
groundwater basins like the Central Valley, neglecting the essential role of hillslope groundwater systems in the small
headwater watersheds that support salmon populations. Increasingly, groundwater infiltration and recharge projects
are being proposed, but securing permits for restoration actions and predicting the benefits of actions are not always
straightforward. This session will address three main challenges and explore solutions regarding groundwater
modeling of streamflow depletion in diverse (geology, biome, etc.) landscapes; designing and permitting

infiltration and flood recharge projects; and efforts to develop county groundwater well ordinances to protect public
trust resources.
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Process controls on low flows in headwaters:
What do we know (and not know, but could)
that can help inform management?

David Dralle, USDA Forest Service Pacific Southwest Research Station
Salmonid Restoration Federation Conference 2024
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Groundwater in California

where we manage for it... and where we don't....




Where is groundwater?

where we manage for it...

The 500+
SGMA
basins

San Joagquin Valley Hydrology

s Area of land subsidence

and where we don't....




Today'’s talk

Where is groundwater?
How does groundwater drain and produce flow?
How Is groundwater refilled?

Pressing management questions?



Where is groundwater?
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General observations of hillslope groundwater systems:

Saturated “slab” atop fresh bedrock that
slopes and drains toward streams
Resides within fractured rock, not soil
Deepest at the ridge

Drives most or all of streamflow
generation (even during very wet
periods), especially during the dry
season

Highly responsive to individual storms
(quick to drain)

May or may not be recharged in a given
year, depending on precipitation

By volume (e.g. mm), smaller than
unsaturated root zone storage

Conceptual diagram modified from criginal by Daniella Rempe






How does it drain?
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Lateral, subsurface flow
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Saturation overland flow

deciduous oak - annual grass savanna
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In both cases, groundwater mediates all aspects of flow regime
(see Dralle et al 2023, “Salmonid and the subsurface...”)
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How does it refill?

A horizon
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Wet sponge drips excess water,
and stays wet
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Channel conditions really matter at low flows

Surface flow appears where flow from upstream
exceeds the capacity of the subsurface

Stream Channel

Godsey and Kirchner. Hydrological Processes, 2014.
Hyporheic Zone
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What are key unanswered questions?
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How should | manage vegetation
to increase low flows?




Where do roots get water? Unsaturated “sponge” vs. groundwater

Roots in the unsaturated sponge
primarily affect recharge (drippy
sponge)

=> Indirect impact on low flows

Roots in the saturated bucket “pump”

_ ‘ . groundwater
Soil o, => Direct impact on low flows
Saprolite

Weathered The Other Water Users:
bedrock How Plant and Human Water

Use Impact Streams
Dana A Lapides, USDA-ARS
Eresh SW Watershed Research Center

bedrock




How does pumping impact flows?




Adapt existing models, develop some new ones?

Gmw.uware'r Pamong §A (b)
Z é Whes, strasinfiow
‘would have beertin
absenos of

grourdveler pairping

Ohean

sirgaenfiow 17

7
Water that Is Groundwater Doplelion Streamflow Depletion T,
pumped from a Pumping reduces Pumping caplures groundwater thal would
well comes from groundwater storage. have flown into the stream and/or inducas

two sources: Thiz can be quantified by infiliration from the stream inta the aguifer

measuring chianges in = .
. groundwater levels. guoangfylnsd Slrtam:(m Depleusbm Concsptual diagram modifiad Trom original by Daniella Rempe
m Groundwater Fumping using
e.g. Zipper et al 2019 mbolysit s i e
g‘hﬂeédm;e;kc‘fd‘m::tls) Approaches for Evaluating e
: : Il Georgakakos, Fh.U., An Experiment at the Sierra Nevada
U"'.ﬁed .M°d°|'"9 Approaches‘to UC Berkeley Streamflow Depletion; Shedding Aquatic Research Lab
Estimating Streamflow Depletion Some Light on the Secret, Occult Kelly Goedde-Matthews,
Due tO Groundwatef Pumping. d c Ied N t f's rf ! uc Davis. Center for
Nick Murphy, The Nature Sy O MO O AN s Watershed Sciences
Conservancy Water/Groundwater Interactions,
Jeremy Kobor, MS, PG, OE|, Inc




an | slow down groundwater
rainage and get more later?
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Short-Term Hydrologic Responses to
Process-Based Restoration
Emma Sevier, MS, Cal Poly Humboldt
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Well? Did it Work?

Process-Based Restoration

in Burned Headwater Meadows:
Exploring Potential for Sediment Storage
and Floodplain Reconnection

Kate Wilcox, USDA Forest Service,
Pacific Southwest Research Station
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Can we increase low flows by
Increasing recharge?



Central Belt | Argillite-matrix melange

Coastal Belt | Argillite-sandstone turbidites

Thin subsurface CZ
low storage capacity

Wet season | Winter

Small-Scale Groundwater Recharge
Opportunities for Streamflow
Augmentation, Little Mill Creek,
Navarro River Watershed
Christopher Woltemade, Ph.D.,
Prunuske Chatham, Inc.
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Important: this dynamic storage is primarily depleted by plants in summer
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Interconnected Surface Water

“Surface water that is hydrologically connected at any
point by a continuous saturated zone to the underlying

aquifer...”

-Title 23 CA Code of Regulations
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A. Gaining stream

Flow direction

Shallow aquifer

B. Losing stream

Flow direction

Water table P . Unsg‘t)l:‘r:ted
------------ Aot / e
‘ \-
-.—-/ \—.

Barlow & Leake, 2012



Streamflow Depletion

* Groundwater pumping results in streamflow depletion
(reduction in flow and water level) of interconnected
surface waters

EXPLANATION

+ Streamflow depletion occurs due to groundwater === Rinemfion wihenl prmping

pumping, regardless of pumping volume or rate — Streamflow with pumping

Streamflow, in cubic feet per second

e N S o
o St = = edenfacy =

&el\at_urc @ Barlow & Leake 2o
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Streamflow Depletion

L3
bo .
s E
Stora | Q. =
* Hydraulic properties of the aquifer systems influence domin: | &£ =
system response to groundwater pumping supi| 5 O
100 v |- > <
« Timing, location and magnitude of groundwater = h
pumping is key to our understanding of streamflow = "
depletion dynamics = P g —— V)
5 Time
* Over long timescales, a majority of pumped water 3 ~
comes from streamflow depletion s _
ER C 4 Pumping well Pumping well -
) O near stream far from stream
z a and/or and/or
S - coarse material fine material
g @ ~
o 0 \‘ (depletion
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0 . —
Time
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Where are we working?
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With respect to well ordinance revisions...
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Sonoma County

Public trust resource impact analysis requires —

* Mapping habitat value
« Mapping existing and potential streamflow
depletion impacts
» Development of a well-permitting framework
based upon the best available science,
informing policy

5t Halena

. Sebastopel

Working with partners on adaptive management
plants to improve the protection of public trust
resources

Public Trust Review Area A
B Medium Risk - PTRA Stream Buffers
B Hgh Risk - PTRA Subwatersheds

[ Flow Reguiated 0 5 10 20
— — s

"l]“"-l\.atlll‘C@ OEI & Permit Sonoma, 2023
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Sonoma County

Top 10 counties statewide —
wells installed since 3/28/22

Sonoma County
8t most irrigation wells installed

2"d most domestic wells installed

Merced

Stanislaus P 81

Madera
Sonoma
San Luis Obispo

Glenn

fior e
[rp— 1
PSE&
PSG
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100

200

300

= Irrigation
B Industrial

400

TheNature
nsen’anq’

&

Fresno — 548
Sonom [ —————— 10
Tulare — 333
San Bernardino _ 246
Tehama — 211
m Domestic
Madera _ 189 ® Public Supply
Placer _ 188
Merced _ 183
Stanislaus _ 173
Nevada |WNEESSSS— 170

Q 100 200 300 400 500 600

DWR, 2024



Siskiyou County

Scott River Streamflow
* Mid-summer to fall streamflow mainly depends on USGS Gage 1151 9500
baseflow from the valley aquifer 100000 g 1 : T : — T
b Pre-WY1977 | Post-WY 1977
¢ -« >

* Inthe 1970s, late-summer streamflow decreased by [
~50% 10000 ¢

» Likely driving factors -
» Switch from surface water to groundwater irrigation
» Additional cutting of alfalfa

1000

Streamflow(cfs)

mnll “allml i

100

R (R . |

w N\ A U'Il'"
[ el bt
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lth\atuu,@ Harter Lab, UC Davis
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and more counties!
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Statewide — Sustainable Groundwater Management Act (SGMA) Implementation

Sustainability

Avoid Six Undesirable Results

N N A

Lowering Reduction of Seawater

‘e

of GW Levels GW Storage It

Degraded Lana Depletion of

Water Quality Subsider. » Interconnected
Streams

CALVORMA DEFARTMENT OF WATER RESOUNCES

SUSTAINABLE GROUNDWATER
MANAGEMENT OFFICE

Depletions of Interconnected
Surface Water
AN INTRODUCTION

2018






Quantifying Streamflow Depletion from Groundwater pumping: A practical Review of past and Emerging Approaches
for Water Management

Streamflow depletion cannot be measured directly...”

Zipper et al. 2022
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Analytical Models

Statistical Models

Modeling Streamflow Depletion

Numerical Models

Maan luby-Sapt Streamfiow Depleation
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Modeling Streamflow Depletion

-

Glover model
Hunt model Groundwater

i models
Analytical (MODFLOW, ...)

Common

Approaches

Trend
analysis

Correlation Integrated
analysis hydrologic models
(HydroGeoSphere,

Statistical ParFlow, ...)

Approaches

Use in Streamflow Depletion Estimation
for Water Management

Analytical Machine
depletion learning Causal
Y functions inference

—
Low Complexity and Resources Required (data needs, time/effort/cost, processes represented) Hign

Rare

'(l‘_llﬁl\'at.um@ Zipper et al. 2022
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Why a ‘unified modeling approach’ ?

Analytical

Approaches

Statistical

Approaches

Aquatic Habitat Value y

0 Low A

B Medium

. High 0 5 10 20
B Very High
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Wells 2018-23
Type

e DOMESTIC

@® INDUSTRIAL

© IRRIGATION

O PUBLIC
Ground Water Basins
Basin
PAJARO VALLEY
SANTA CRUZ MID-COUNTY
SANTA MARGARITA

Why a ‘unified modeling approach’ ?

Fill in the gaps!

Analytical Numerical
Approaches Models

"'hel\'aturc@
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Unified Modeling Approach to Streamflow Depletion

Goal: Develop a suite of modeling approaches to evaluate streamflow depletion caused by
groundwater pumping

Case Studies: Sonoma County & Scott Valley, CA

Analytical Modeling Numerical Modeling
» Develop analytical depletion function (ADF) + Explore methodologies to apply numerical
models for both geographies modeling estimates of streamflow depletion
+ Estimate regional-scale cumulative streamflow to a well permitting framework
depletion due to existing groundwater pumping » Exchange of site-specific hydrogeologic data
* Modeling comparison studies to evaluate to inform analytical model development

analytical vs. numerical modeling use cases

TheNature @
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ADF Model Workflow

s nF anahsr
Vi Qa

IEE( | ‘ In?ut ‘

(@) stream Proximity Criteria: (D) Depletion Apportionment Equation: (C) Anaiyticar Modet:
Adjacent + Expanding Web Squared Glover & Balmer (1954)

'l"]le]_\'atul'c @ Zipper et al. 2022
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ADF Model Workflow

BE'N

Stream network
« Source: NHDplusv2

Hydrogeologic data needs- Transmissivity

* Source: Zell and Sanford, 2020
* From CONUS-scale MODFLOW models

Elevation (m)

BN

3807

1232"W 1230w 1228'W 122 6°W 122487

&*‘-Nat.ul‘C@ KU HEAL, Zipper Lab Group
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ADF Model Workflow

383N

* Parcel centroids
* Any parcel with estimated GW use >0 oy

 Parcel dataset: Sonoma County

« Annual water use by parcel: Sonoma S5
County
Water use (m3/d)
» Disaggregated annual estimates to e
monthly rates based on % of total in e
each month from OEI schedule
 Split into ‘Agricultural’ and ‘Non-Ag’ use
BON
123 2°W 1230w 1228"W 1226'W 122 4'W

"L‘leNature,@ KU HEAL, Zipper Lab Group, Sonoma County
nhen’aﬂC} 7



ADF Model Workflow

Mark West Creek

Park Wesland waber Lsa >

Elevation (m)
Waln iew R
.o
er

AT

EarN

hEF

Y

mewd

s faaeay ZIRTA [P

TheNature @
Conservancy &%

Mill Creek

nean

NN

BN

Ml Creak and waler use > 0

MWW

2w

12w

KU HEAL, Zipper Lab Group



ADF Model Workflow

Mark West Mill Creek
38.62°N 4
38.56°N -
38.54°N - 38.60°N -
38.52°N 1
38.58°N A
38.50°N 4
38.56°N A
38.48°N 1
38.54°N 1
38.46°N -
122.70°W 122.65°W 122.60°W 122.55"W 122.95°W 122.90°W 122.8¢
Streamflow depletion in each stream [m3/d] Sector Streamflow depletion in each stream [m3/d] Sector
100200300400 + Non-Agricultural 50 10015020025 + Non-Agricultul

The\. . W i
w&}eﬁa‘}}& < t = 7200 days (September, year 20) KU HEAL, Zipper Lab Group



Modeling Comparison Considerations

<
- °
L]

Model Agreement _ . ® $
+ estimates of streamflow depletion, . o * ®
* timing, location and magnitude of streamflow depletion ° . e ,°

simulated LICT

L ° ¥
. . . . °

 estimates of streamflow depletion impact to environmental 150 ° S “

ﬂOWS within a well permitting framework . “ ® ® ‘.

do different models arrive at the same conclusion, when applied as a well permitting decision-support tool? ° .. ° b L

2

Model Complexity o .O b Sl k ] L4

data requirements 100 k] o

technical expertise .

computational requirements ° ° 9 0
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Next steps — Future research

Model Comparison Studies
- Sonoma County
- Siskiyou County (Scott Valley to start)

Decision-support tool development

- Guidance for the unified modeling of streamflow
depletion through the lens of a well permitting
framework

TheNaturc @
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The Source of Water Derived from Wells—Essential Factors Controlling the Response of an Aquifer to Development

All water discharged from wells
~Is balanced by a loss of water somewhere.”

Charles V. Theis, 1941
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Sonoma County

* Well ordinance revisions driving a need for technical
modeling capacity, at the county scale —

+ Estimates of existing cumulative streamflow depletion
+ Estimates of acute, point-source streamflow depletion
potential from proposed wells

TheNature @
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Siskiyou County

Range of development stages for existing numerical models

Need for modeling tools of with varying resolution, complexity and COST

0 Alfalfa 0 Mixad Pasture
Camrots Native Pasture
0 Greenhouse Onons and Garlic
Field W Polaloes
B Grain and Hay B Strawberries
N Grasses Vineyards
0 Truck Crops Wheat Mrp by Spener Cole. June 1=, 2021
g - . ').'
MeNature (% Cole, 2021
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Statewide — Sustainable Groundwater Management Act (SGMA) Implementation

Unclear how the regulatory benchmark of SGMA (2015) conditions will shape ISW management
under SGMA

Developing ISW guidance presents an opportunity to work with state agencies to develop
consistent modeling approaches
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ADF Model Workflow

Water Use

* Grouped into “Agricultural” and “Non-agricultural”
* Agricultural = Seasonal pattern expected

* Agriculture, School/Golf, Winery/Vines
* Non-agricultural = Year-round use expected

* Commercial, Residential, MultiFamily

*Disaggregated annual estimates to monthly

rates based on % of total in each month from OEI
schedule
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ADF Model Workflow Example well: APN 028-110-007

YO N+
4°N 4 \ ™\
Example - Agricultural Well in Mark West =
® a0 3B 52°N =
Creek 5 :
g- A 30N+ o
*Apportionment reflects adjacent $2 gl
. . . <
+ expanding criteria £
*Start of time — adjacent streams only ;a*; N e —
*More streams affected with time 5 ——— : c AR G
+Different seasonal depletion amplitudes $ - ECA——
depending on stream affected b v e e
. Time [years], 15 day timestep Example well: APN 028-110-007
*But, no streams are fully recovering every year :
~ ).34 8 66 o
x4
é‘ 854 .
*t =7200 (~20 years, September) 0 ) Gl
*Impacts greatest in nearby segments 3 - 38.52°N1
*However, some impacts even quite far s ., sonq B
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Time [years), 15 day timestep 2270°'W 12285°'W  12280'W  122.55°'W
Depletion [m3/d) -
01 02 03
E]‘ENM-LU'C,@ KU HEAL, Zipper Lab Group
z(Jns-ervanq y



TheNature £
nsen‘a.n(:}' 7

Streamflow Depletion

Water that is Groundwater Depletion

pumped from a Pumping reduces
well comes from groundwater storage.
two sources: This can be quantified by
measuring changes in
groundwater levels.

Groundwater Pumping

A (b)

o

'E What streamflow

g would have been in

&5 absence of
groundwater pumping

Time

Streamflow Depletioﬁ
Pumping captures groundwater that would
have flown into the stream and/or induces
infiltration from the stream into the aquifer.
This cannot be directly measured and
is challenging to estimate.
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Future global streamflow declines
are probably moresevere than
previously estimated
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Climate change and increasing water use associated with socio-economic
growth have exacerbated the water crisis in many parts of the world. Many
regional studies rely on Earth System Models that, however, do not fully

exploit streamflow observations. Here we offer an observation-based
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Leading to lower low flows
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Ln(Annual mean daily flow (cms))

Reynolds, Lindsay V., Patrick B. Shafroth, and N. LeRoy
Poff. "Modeled intermittency risk for small streams in the
Upper Colorado River Basin under climate change."
Journal of Hydrology 523 (2015): 768-780.
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Leading to lower low flows and summer flows
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Leading to lower low flows and summer flows and more intermittency
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Reductions in streamflow threaten habitat for aquatic organisms and lead to decreasing populations or species loss

Probability

1.00
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0.50
0.25

= 000

Rainbow trout

Rogers, Jennifer B., et al. "The impact of climate change induced alterations of streamflow and stream temperature
on the distribution of riparian species." PLoS One 15.11 (2020): e0242682.



What's causing streamflow declines?

Climate change

Groundwater pumping
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These impacts particularly show up in low flows
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But there’s more beneath the surface than
just groundwater
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OQutline

1. What happens to water as it transits the unsaturated zone before it reaches the water table?
2. How do these plant-water interactions affect runoff in streams?



Outline

1. What happens to water as it transits the unsaturated zone before it reaches the water table?
2. How do these plant-water interactions affect runoff in streams?
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Plants access water from deeper as the dry season progresses
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It's pretty much the same pattern, regardless of precipitation
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Drainage continues into the summer
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The unsaturated zone might
be important for low flows



Outline

1. What happens to water as it transits the unsaturated zone before it reaches the water table?

Drainage
Plants use continues through
water from the dry periods

Rain wets the top down
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Outline

1. What happens to water as it transits the unsaturated zone before it reaches the water table?
2. How do these plant-water interactions affect runoff in streams?

Drainage
Plants use continues through
water from the dry periods

Rain wets the top down
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The deficit at the start of the wet season sets the initial condition for the next year’s streamflow
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The deficit at the start of the wet season sets the initial condition for the next year’s streamflow

Manthly water flux or deficit [mn

0 4
2008-10-01 2

= Precipitation

— Evapotranspiration
- Root zone storage deficit

™4 A

Dry period Rains begin -




The deficit at the start of the wet season sets the initial condition for the next year’s streamflow
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The deficit at the start of the wet season sets the initial condition for the next year’s streamflow
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Spring streamflow percentile,
median across all study sites
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Where did Sierra snow go this spring? Not
into California rivers and water supplies

by Paul Rogers, Mercury News
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What was special about 20217

It was a year following a multi-
year drought period
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On dry years, deficit may What does it mean?
not be fully replenished,

setting dry initial condition The deficit carries the
for following year signature of dry years
| Into subsequent
/1 wetter years
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On wetter years,
deficit is fully

_ So if we add the deficit at the beginning of the
replenished

year as a model predictor for streamflow...



% difference from 2021 streamflow

200

100+

-1007

Minimally disturbed basins

overpredicts

-

Median error in 2021 forecast is reduced from 60% to 20%

—p-

—————

@)

underpredicts

:

Snowpack Snonack
and winter Pand deficit
only

only

in minimally disturbed basins

69



% difference from 2021 streamflow

Median error in 2021 forecast is reduced from 18% to 2% in basins essential to California’s water supply
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What does this teach us about how plants affect runoff at different places?
The deficit in the unsaturated zone affects streamflow, particularly in years following dry years.
These deficits are generated by plant water use.

Deficit behavior is different depending on local site behavior.
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Low flows in streams

streamflow

With drip

. No drip

Time since start of dry season



Summer recessions #11475560
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Outline

1. What happens to water as it transits the unsaturated zone before it reaches the water table?
2. How do these plant-water interactions affect runoff in streams?

Bigger deficits mean less streamflow

Where did Sierra snow go this spring? Not
into California rivers and water supplies

Deficit behavior determines whether
low flows are coupled to
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Final takeaways

Groundwater is stream water
When water is withdrawn from groundwater, supply to streams is reduced
Anything we do at the surface has to filter through the unsaturated zone before it impacts groundwater

Different landscapes have different responses due to their geological and ecological structure (e.g.,
different deficit behavior and low flow behavior)

The unsaturated zone plays an important role in determining how landscapes respond to different
conditions



Questions?
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Baseflow
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Groundwater’s impact on streamflow is hard to measure,
especially in headwater catchments

* Cannot directly observe groundwater

* Wells are point sources on hillslopes and expensive

* Time lags between water withdrawals and impacts to streamflow

* Individual basins can be mixed lithology

* Complicated subsurface dynamics

 Headwater catchments differ from lowland systems with large
aquifers



Rain and groundwater are particularly important in Coastal

California
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Discharge

80" & 107 purcensie of Bow

D ® Median (50° percersie) Sow
Peak

magnitude
flows

recession
flow

Dry-season
baseflow

Dec Alpt Jul Sep

Grantham et al. 2022



Groundwater drives streamflow in summer
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Groundwater drives streamflow in summer
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Groundwater drives streamflow in summer
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Hillslope structure, subsurface water storage, and seasonal hydrological dynamics

Central Belt | Argillite-matrix melange Coastal Belt | Argillite-sandstone turbidites
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Storage capacity decouples rainfall and streamflow

Theoretical distributions:

o
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Idealized observations and interpretation:
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Storage capacity decouples rainfall and streamflow
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Storage-discharge sensitivity functions to estimate
streamflow
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Storage-discharge sensitivity functions (Kirchner 2009)

* Watershed storage can be quantified by looking at
changes in discharge using a storage-discharge sensitivity
function g(Q)

e dS/dt=P-Q-E

« P = Precipitation, Q = Discharge, E = Evapotranspiration

on
1

L= Q) ﬁ:’

;’lf'cﬂm

L L L !
110 120 130 140) 150
storage (5. mm)

o
]

Pl
]

Discharge (Q, mm/hr)

o

* g(Q) quantifies how much discharge will change for a | |
given change in storage Figure 3, Kirchner 2009

* dQ/dt=-g(Q)(W +Q)

« W = groundwater withdrawals, effectively a negative groundwater
recharge term

« This is a first order differential equation for Q, which can be
solved under natural (i.e. W = 0) and pumped/impacted (i.e.
W > 0) scenario



Storage-discharge sensitivity functions to estimate
streamflow

10

» Storage-discharge sensitivity functions (Kirchner % 8
2009) E 6

* Quantify mountain block recharge (Ajami et al. 2011) %4% Q=) Q"

* Quantify storage that does not drive streamflow g 5] ,v’l;-(s)
streamflow (Dralle et al. 2018) & | ]]‘

* Infer hillslope groundwater recharge (Dralle et al. 110 120 130 140 150
2023) Storage (S, mm)

Figure 3, Kirchner 2009

e Notes and assumptions™**

* Important to make inferences at the scale of the analysis
(watershed scale)

* Water is assumed to be extracted instantly and evenly
across the watershed



Storage-discharge
functions to |
estimate streamflow aves |

streamflow
(S, not directlyl,

d e p | Et i O n measurable)

Storage-discharge function g(Q)

$ ‘}— Farm water use (U, )
v

A

* 1‘?@
-

Discharge
Q)

=

Q ., (measured) T0

TR

Storage (S)

Discharge (Q, mm)

drier

unsaturated

saturated Ik
wetter

dQ/dt = -g(Q)(W +Q)
W = groundwater withdrawals, effectively a negative
groundwater recharge = 11 pumping

T1
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Cast study

e Use storage-discharge sensitivity functions to
model streamflow from groundwater storage
at the small watershed scale

* Create hypothetical scenarios that represent
combinations of parameters
* Water source
* Groundwater pumping or Surface diversion
* Farm water use efficiency
e 50, 75, 90, 95 percentile of water users
e Area of cannabis farms
* 0.1,0.25,1,25,45%
 Lithologies
* Elder and Dry Creek
* \Water year
* Initial conditions 0.1mm/day to 10mm/day

336 combinations scenarios result from the combination of these factors




Water source

Cannabis farms in Mendocino and Humboldt
predominantly use well to irrigate crops

Baseline well use
prediction
Overall 0.60
Humboldt County 0.38
Mendocino County 0.71

Dillis et al. 2021

Well Use Among Mapped Parcels
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Areal coverage of cannabis agriculture

0.1,0.25, 1, 2.5,and 4.5 %

o
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Lithology: two different streams

VI. Dry season wetted channel extent

Elder Creek ‘ North

1 km

Late August
wetted channel N\
drainage density

= 1.43 km/km?

Dry Creek
catchment

Late August
wetted channel
drainage density

= 0.15 km/km?

Dralle et al. 2023
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Cast study

e Use storage-discharge sensitivity functions to
model streamflow from groundwater storage
at the small watershed scale

* Create hypothetical scenarios that represent
combinations of parameters
* Water source
* Groundwater pumping or Surface diversion
* |rrigation rate
e 50, 75, 90, 95 percentile of water users
e Area of cannabis farms
* 0.1,0.25,1,25,45%
Lithologies
* Elder and Dry Creek

* \Water year
* Initial conditions 0.1mm/day to 10mm/day

336 combinations scenarios result from the combination of these factors




Impacts on Streamflow

2017, median water use rate, 2.5% cover

Elder Dry Creek
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Impacts on Streamflow

2017, median water use rate, 0.25% cover

Elder Dry Creek

38 —— Q (mmy/day) —— Q (mmy/day)
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Impacts on Streamflow

2017, water user contrasts, 2.5% cover

Elder, median user Elder, 95t percentile user

—— Q (mmy/day) —— Q (mmy/day)
Unimpaired (model) ' —~=~ Unimpaired (model)
Impaired (model pumping) Impaired (model pumping)

- Direct withdrawal (Q - W) - Direct withdrawal (Q - W)
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Percent reduction in summer flow

Dry Creek Elder Creek

wo
o

on
o

%= groundwater
-& surface

[
o

Percent reduction in summer flow

0 1 2 3 4 0 1 2 3 4
Percent areal coverage of cannabis agriculture



Percent reduction in summer streamflow
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Effect sizes of predictor percent reduction in
summer flow

Dry Elder
source:surface - g @
initial conditions (flow)- @ ®
farm use efficiency : @ | : ®
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parameter estimate



Additional Zero-flow days

Dry Creek Elder Creek

150
<
Q
o=
o
Q 100
‘5 source
a - groundwater
%’ - surface
S
= 50 g —
= LAk 3
E V

0 1 2 3 4 0 1 2 3 4
Percent areal coverage of cannabis agriculture



Effect sizes of predictor on additional zero-
flow davs

Dry Elder
source:surface { HH = 2
initial conditions (mm storage) 1 @ ®
farm use efficiency 4 —@— ; &
% areal coverage of cannibis - ® @
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parameter estimate



Conclusions

 Storage-discharge sensitivity functions can be useful for estimating effects
of groundwater pumping at the scale of headwater streams

* Lower initial conditions (dry years), higher coverage of cannabis, higher
pumping rates, and extraction from surface water rather than wells all lead
to lower summer discharge and more days of zero flow

* Mélange streams more sensitive (with regard to discharge) to withdrawal

* Accelerated drying
* Greater impact at similar withdrawal rate

* Wide variation in cannabis irrigation rate, more efficient watering and onsite
storage could have a large impact

* Pumping’s effect on streamflow is expected to be delayed relative to surface
water diversions but can still be substantial.
 Spatial distribution of farms and wells in a watershed matters
* May impact other aspects of the ecosystem more than direct water withdrawals
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Types of Streamflow Depletion

Acute

Short response time
Alluvial
Shallow/near-stream
‘It’s about the well’

Cumulative

Long response time
Any geology

Any well completion

‘It's about the water
balance’




Streamflow Depletion Approaches

e Integrated Numerical Models
e Generally considered the ‘gold standard’
e Physically-based representation of all relevant hydrologic processes
e (Can calibrate to streamflow & groundwater observations

e Analytical Models
e Statistical Models



Existing Integrated Numerical Models

Integrated Surface and Groundwater Modeling and Integrated Surface and Groundwater Modeling and Integrated Surface and Groundwater Modeling and
Flow Avafiability Analysls for Restoration Flow Availability Analysis for Restoration Flow Availability Analysis for Restoration
Frigyheatusy Pramming; Prioritization Planning, Upper Mark West Creek Prioritization Planning, Mill Creek Watershed,

Green Valley\Atascadero and Dutch Bill Creek Watersheds, Watershed, Sonoma County, CA Sonoma County, CA
Sonoma County, California >

i Agrovinent Ne, W 176AR wwrvmbon B winl Agrssinwnl No, WC-1659F4
LD 3 ¢ (RFIPRE

March 2016

Movembe: 205

e CDFW & WCB Funded

e (Coast Range Watershed Institute, OEI, Sonoma RCD, Gold
Ridge RCD, Pepperwood Preserve, Trout Unlimited, FMWW,
County Parks



Integrated Model Considerations

e Represents all relevant processes/feedbacks?

e Appropriate scale and spatial extent? Tradifionsl Apyrosch
e Based on quality input data?
o Well calibrated/validated?

Stream Seepage Groundwater Evapotranspiration
to Groundwater charge to and Surface
+800 AFY : Leakageof
Subsurface and = -1,200 AFY Groundwater
Mountain Front ‘/ ot < -2,300 AFY
Groundwater ] > -
Inflow = -
43,700 AFY

Integrated Approach

o

Groundwater /

Pu mpl ﬂ eal \_
(agricu It ral ndwater Septic Retur
municipal Re hag Flows

& domestic) +3,300 AFY +300 AFY

-5, 700 AFY

maaturaton \-_+ Overland
ont "_[\ 'now )

*Change In storage values may not equal inflows minus outflows due to roundin

C/O Sonoma Valley GSP




Water Balance
e Atascadero/Green Valley Creek

Outflows

@ Dry Year (2014)
@ 10-yr Average (2009-2019)
O Wet Year (2017)
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Sonoma County Well Ordinance
Subbasin Prioritization

Designed as a screening tool to aid in identifying a
public trust review area

Characterizes the degree of cumulative groundwater
use relative to groundwater availability

Not designed to address individual well impacts



Pumping Ratio Rationale

Streamflow + GW ET + Pumping
+ GW Outflow +/- A Storage

Recharge + GW Inflow =
Recharge = Streamflow + Pumping

« Ratio of pumping to recharge provides an approximation
of relative cumulative streamflow depletion



Recharge (Soil Water Balance Model)
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@ Green Valley

@ Mark West

e Mil y=2.25x-0.024
O Existing R*=0.97

Impact Thresholds

- Richter et al. (2012)
- Gleeson & Richter (2018)
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Classification Matrix

Low Habitat Value

Moderate Habitat Value

High Habitat Value

Very High Habitat Value

Low SFD
(0 - 10%)

Low Risk Area
Mot included in PTRA

Low Risk Area
Mot included in PTRA

Moderate Risk Area

Stream buffers

High Risk Area

Sub-watershed

Medium SFD
(10 — 20%)

Low Risk Area
Mot included in PTRA

Moderate Risk Area

Stream buffers

High Risk Area

Sub-watershed

High Risk Area

Sub-watershed

High SFD
(>20%)

Low Risk Area
Mot included in PTRA

High Risk Area

Sub-watershed

High Risk Area

Sub-watershed

High Risk Area
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Takeaways

e Regional Screening Level Analysis
— Pumping Ratio/Analytical Models

e Local Detailed Analysis
— Numerical Models
— Monitoring & Subsurface Characterization

e Tailor Study/Regulation to Type of Depletion
— Acute depletion — setbacks/storage & forbearance
— Cumulative depletion - volume caps






Effects of short-term flow reductions on juvenile
rainbow trout (Oncorhynchus mykiss)

- Kelly Goedde-Matthews, UC Davis Graduate Group in Ecology

Rob Lusardi: UC Davis Department of Wildlife, Fish, and Conservation Biology

Bob Hawkins: California Department of Fish and Wildlife




Effects of Short-Term Flow Reductions on Juvenile Rainbow Trout

1. Background 4. Next Steps

2. Question and

Experimental Approach 5. Conclusions

Totul Fowzcamemd Fodi fioer =4zt Siserrod (oo it 1y 1 iacsmec,

- ’ﬁ = | 3. Results

Tead Mot Rezovnwe




California’s Fish Are Not Doing Well

Extinct 5%
Least

Concern
17%

Near-
Threatened > Endangered
26% > i _‘ 26%

Status of fishes (N = 129) native to inland waters of California in 2010.

Moyle et al. 2011, Biological Conservation



California’s Fish Are Not Doing Well
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Score Range: Level of Concern
Change in Level of Concern in California’s native salmonids, 2008 vs. 2017.

State of Salmonids, Moyle et al. 2017



Long-Term Flow Reductions Negatively Affect Fish

Mortality Growth Rates
Emigration " | Prey Availability
Stress

Armstrong et al. 1998, Arnekleiv et al 2004, Benejam et al. 2010, Flodmark et al 2002, Hakala and Hartman 2004, Harvey et al.
2006, Krimmer et al 2011, Mcintosh et al. 2008, McKay and King 2006, Nislow et al. 2004, Riley et al. 2009, Spina et al. 2009



Repeated, Short-Term
Flow Alterations

* Hydroelectric power

 Recreation




Pumping Causes Repeated,
Short-Term Flow Reductions

* Dust Abatement

« Cannabis Irrigation




Pumping Standards to Protect Fish

* Very few laws limit short-term pumping
 Effectiveness of such laws is largely unknown

CALIFORNIA

DEPARTMENT OF
H &

WILDLIFE
California Fish and “Water Drafting Specifications” California Code of Regulations,
Game Code section 5937 Technical Memorandum Title 14, Section 923.7(1)

‘good condition” Does not have the force of law Timber operations

California Fish and Game Code

sections 1600, et seq. Watersheds with CESA-listed

anadromous salmonids
“substantially”

Burden on diverters to notify



Effects of Short-Term Flow Reductions on Juvenile Rainbow Trout

2. Question and
Experimental Approach

T-.
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Sierra Nevada Aquatic Research Lab (SNARL)
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Effects of Short-Term Flow Reductions on Juvenile Rainbow Trout

Direct Effects: Indirect Effects:
* Mortality/Survivorship « Habitat (water depths,
. Growth velocities, temperature)

* Benthic

* Movement Behavior .
macroinvertebrates

* Stress (cortisol)

* Energy Storage (liver
glycogen)



Predicted Effects of Repeated Short-Term
Flow Reductions

Water Depth
Water Temperature

Water Velocity
Mortality
Growth
Movement _
Liver Glycogen
Stress

Macroinvertebrate Density




Effects of Short-Term Flow Reductions on Juvenile Rainbow Trout

1. Background 4. Next Steps

2. Question and

Experimental Approach 5. Conclusions
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Reduced Depths and Velocities at Treatment Flow
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Reduced Riffle/Run Habitat at Treatment Flow
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Total # of 5.0
Mortalities
Found

.01

Control vs Treatment

Mean # of
Mortalities 2+
per Channel

More Mortalities in Treatment Channels
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Control vs Treatment



Fewer Recovered Fish from Treatment Channels

Average # of
Fish Recovered
per Channel
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Preliminary Movement Patterns

Ch 2 Control n=385 Ch 3 Treatment n=217
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Preliminary Movement Patterns

Ch 5 Control n=106
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Effects of Short-Term Flow Reductions on Juvenile Rainbow Trout

1. Background 4. Next Steps

2. Question and 5. Conclusions

Experimental Approach
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Effects of Short-Term Flow Reductions on Juvenile Rainbow Trout

5. Conclusions
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How do repeated short-term flow reductions
affect juvenile O. mykiss?

Reduced riffle/run habitat .. i Reduced survival

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Increased mortality l Reduced growth rates ' g <




Impacts

* Inform conservation and
management practices

* Ensure continued protection of
freshwater habitats and the
species that depend upon them
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Thank You!

Questions?
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