Navarro Streamflow Enhancement Community-based Streamflow & Water Management Strategies For Farms, People and Fish

> Presentation to the Salmonid Restoration Federation Coho Confab August 20, 2021

Linda MacElwee Mendocino County RCD Monty Schmitt The Nature Conservancy

Navarro River Watershed

۲

- Priority for the recovery of listed coho salmon and steelhead populations
 - Local landowners want improved water security, healthy rivers and thriving fisheries
 - Opportunity to use and improve existing water management policies and tools
- Provide a regional model for collaborative watershed approaches

Entering Navarro River Watershed

From the top of the watershed

Through the Yorkville Highlands

to the Anderson Valley from Boonville to Philo

Down into the deep end of the watershed

To the mouth of the river...

During high flows the Navarro can get up to nearly 60,000 cfs Photo: January 2006

The Navarro is a very "flashy" river system.... with low flows at the Navarro USGS gauge getting down to <.01 CFS (July 25, 2021)

MCRCD has been working in the Navarro since 2001

North Coast Water Management Challenges

Global Average Temperature

Coho Recovery & Dry Season Baseflows

Fish Habitat Needs:

- Passage
- Spawning
- Juvenile Rearing –summer & fall

Navarro River Hydrology

- High flows in winter/ spring
- Low flows in summer/ fall

- Summer diversions further reduce stream flows
- Diversions can dewater stream reaches, particularly in dry years

Existing Water Use and Needs

Navarro River Watershed

<u>Water Use</u>

- Annual water use = 1,700 Acre-Feet
 - Summer water use = 1,400 Acre-Feet
 - 82% of all water is use in summer

<u>Water Supply</u> Average annual runoff = 240,000 Acre-Feet

Supply vs Need

Human water need = ~ 1% of runoff

The Solution

Reduce reliance on dry season diversions by storing water in the wet season to meet human needs

Water Management Projects, Actions & Policies

Blue Meadow Farm

Water Management Projects:

- Storage ponds and tanks
- Rainwater harvesting
- Large wood restoration
- Infiltration and groundwater recharge
- Release of stored water

Husch Vineyard Pond

North Fork Navarro LWD

Water Management Projects, Actions & Policies

Water Management Actions

- Conservation and efficiency
- Coordinate timing of diversions
 - Mill Creek and Mainstem Navarro
- Reducing diversion rates

Example: McKee Creek - Coordinated Diversion Management: Pumping Season No coordination: May 7 –Dec 15 With coordination: June 7- Dec 15 (Extended season of diversion by <u>1 month</u>)

Water Management Projects, Actions & Policies

10.20

EFFECTIVE FEBRUARY 4, 2014

DIVISION OF WATER RIGHTS STATE WATER RESOURCES CONTROL BOARD CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

A Practitioner's Guide To Instream Flow Transactions in California

Small Watershed Instream Flow Transfers (SWIFT) Working Group

March 2016

A guide to help water right holders - and those assisting them - understand their options for keeping water instream in California.

Policies and Water Right Tools:

- New water rights winter storage
 - Small Domestic Use
 - Small Irrigation Use
- Forbearance agreements
 - All projects
- Safe Harbor Agreements
- Instream flow dedications (1707)
- CWM Handbook and other resources
 - See our website

Watershed Community-Based Flow Restoration

- Decentralized Water Supply
 Many points of diversion
- Streamflow Projects
 - Incremental benefit
 - Slow to implement

• Accelerate Pace and Scale

Collaborative Water Management Guidebook

Collaborative Water Management

A Guide to Enhancing Streamflow and Water Supply Reliability in California's Rural Watersheds and Communities

Alford, C., D. Stolzman, and M. Schmitt. 2021. Collaborative Water Management: A Guide to Enhancing Streamflow and Water Supply Reliability In California's Rural Watersheds and Communities. Prepared for The Nature Conservancy. San Francisco, CA. A collaborative *watershed* approach *incentivizing* individual water users to *collectively* reduce summer diversions to improve streamflow for fish, and improve their water supply reliability.

TheNature

Mill Creek Collaborative Water Management Project

Mill Creek Collaborative Water Management Plan

Mill Creek Collaborative Water Management Plan

0

Why Mill Creek:

- Historic salmon and steelhead runs
- Priority for recovery efforts
- Existing streamflow data
- Mill Creek Watershed
 - ~130 properties
 - Mix of residential and agriculture
 - 47+ water rights
- Existing communication networks
 - Road associations
 - Local demonstration projects
 - Blue Meadow Farm
 - Husch Vineyards

Mill Creek Collaborative Water Management Plan

- **1.** Identified Sub-Watersheds
- 2. Data Collection and Analyses
- 3. Assessed Effectiveness of Management Strategies

Streamflow Gauging and Wet/Dry Mapping

Lower Mill Creek

connected ■ disconnected (discharge < 0.01 ft3/s) ■ no data

Assessed Streamflow Alteration and Developed Functional Flow Objectives for Sub Watersheds

Introducing the California Environmental Flows Framework

The California Environmental Flows Framework (CEFF) is a statewide approach for determining ecological flow criteria. CFFF provides a consistent and defensible approach to identifying ecological flow needs for California's rivers and streams. CFFF is being developed by the Environmental Flows Technical Workgroup (eFlows TWG), a subgroup of the California Water Quality Monitoring Council. The central goal of the cFlows TWG is improved coordination, collaboration, and data sharing among agencies, nonprofits, and other parties interested in instream flows. The cFlows TWG meets quarterly at the State Water Resources Control Board in Sacramento, California.

Determining Ecological Flow Criteria

FUNCTIONAL FLOW COMPONENTS

(Yarnell et al. 2015; Yarnell et al. 2020): Elements of the natural flow regime hypothesized to support important ecosystem processes and functions. Five functional flow components have been identified for California: fall pulse flows; wet-season baseflows; wet -season peak flows; spring recession flows; and dryseason baseflows. Each functional flow component can be quantified using flow metrics that measure ecologically-relevant flow characteristics (i.e., magnitude, frequency, duration, timing, rate of change). Functional flow metrics under reference conditions have been estimated for every reach in the state using models trained on the set of reference gages and are available on the California Natural Flows Database website.

Dry season base and 5-yr peak are altered = low

Flow Component	Flow Metric	Predicted Range at Lower Mill - Na02 and Na13 (COMID 2664783); median (10 th –90 th percentile	Predicted Range at Middle Mill - Na12 (COMID 2664737); median (10th-90th percentile)	Predicted Range at Upper Mill - Na11 (COMID 2664723); median (10th-90th percentile)	Predicted Range at Little Mill (COMID 2664675); median (10 th -90 th percentile)	Predicted Range at Meyer Gulch (COMID 2664715); median (10 th -90 th percentile)	
Fall pulse flow	Fall pulse magnitude	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered	
	Fall pulse timing	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered	
	Fall pulse duration	likely unaltered	likely unaltered	likely unaltered	no data	no data	
Wet season baseflow	Wet season baseflow (median magnitude)	unclear if altered*	unclear if altered*	likely altered (low)*	unclear if altered*	likely unaltered*	
	Wet season start date	unclear if altered	likely unaltered	unclear if altered	likely unaltered	likely unaltered	
	Wet season duration	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered	
Peak flows	5-year flood magnitude	likely altered (low)*	likely altered (low)*	likely altered (low)*	likely altered (low)*	likely altered (low)*	
	5-year flood duration	likely unaltered	likely unaltered	likely unaltered	no data	no data	
	5-year flood frequency (number of 5-year floods/ year)	likely unaltered	likely unaltered	likely unaltered	no data	no data	
Spring recession flows	Spring recession magnitude	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered	
	Spring recession timing	unclear if altered	unclear if altered	unclear if altered	likely altered (early)	likely altered (early)	
	Spring recession duration	likely unaltered	likely unaltered	likely unaltered	unclear if altered	likely unaltered	
	Spring recession rate of change	likely unaltered	likely unaltered	likely unaltered	no data	no data	
Dry season baseflow	Dry season (median) baseflow	likely altered (low)	likely altered (low)	likely unaltered	likely altered (low)	likely altered (low)	
	Dry season start date	likely unaltered	likely unaltered	unclear if altered	likely unaltered	likely unaltered	
	Dry season duration	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered	

Assessed the Effect of Streamflow Depletion Due to Groundwater Pumping

Mill Creek Streamflow Depletion

Scenarios for modified groundwater pumping - Report

2020.05.25

Foundry Spatial Ltd. 3947-A Quadra St. Victoria, BC V8X 1J5

Streamflow Augmentation From Offstream Storage

PRUNUSKE CHATHAM, INC

Technical Memo

- Subject: Streamflow Augmentation Feasibility Mill Creek, Navarro River Watershed
- To: The Navarro River Flow Enhancement Partnership Mendocino County Resource Conservation District (MCRCD) The Nature Conservancy (TNC) Trout Unlimited (TU)
- From: PCI Restoration Design and Planning Lauren Hammack, Principal Geomorphologist Justin Bodell, Senior Landscape Architect Luke Walton, Principal Civil Engineer

Date: June 30, 2021

Table 2. Potential streamflow and release scenarios based on regional augmentation project examplesand Mill Creek specific estimated dry season flow rates. Measured mean monthly flows are listed ascomparison to release scenarios, as is the volume of water storage needed to provide the releases.

	Actual flows 2013/14-2019	Triage	flows	Surviva	l flows	Thriving	g flows	Unimpair	ed 10%*	Unimpair	red dry**
	Mean	Mean		Mean		Mean		Mean		Mean	
	monthly	monthly	acre-	monthly	acre-	monthly	acre-	monthly	acre-	monthly	acre-
	(cfs)	(cfs)	feet	(cfs)	feet	(cfs)	feet	(cfs)	feet	(cfs)	feet
July	0.29			0.2	12	0.5	30	0.5	30	1.0	61
August	0.1	0.1	6	0.2	12	0.5	30	0.2	12	0.6	37
September	0.06	0.2	12	0.2	12	0.5	30	0.1	6	0.4	24
October	0.24	0.1	6	0.2	12	0.5	30	0.5	30	1.1	68
TOTAL			24		48		120		78		190

*Natural Flows Database unimpaired mean monthly flow (1950-2015) using 10th percentile (low end) prediction.

**Natural Flows Database unimpaired mean monthly flow (1950-2015) using driest 33% of years.

- Focused on lower reaches for rearing
- Maintaining connectivity in dry years 24-48 AF
- Over 200 AF of existing storage in lower watershed

Mill Creek Collaborative Water Management Plan

- Watershed Conditions
- Human Water Use
- Salmon Habitat
- Streamflow Study Results and Flow Objectives
- Permitting, Agreements, and other considerations
- Reach specific recommended flow improvement strategies
- Plan implementation

Navarro Flow Enhancement Partnership

Next Steps

- 1. Mill Creek CWM Plan Project Implementation (on-going)
- 2. North Fork Navarro CWM Plan Development (2021-2023)
- 3. Outlet Creek Direct Release Study
- 4. Coordinated Water Diversion Project Mainstem Navarro
- 5. Flynn Creek Groundwater Infiltration Project
- 6. Camp Navarro Rainwater Capture Project
- 7. Mendocino SHaRP / North Coast Salmon Project Implementation
- 8. Streamflow Data Collection
- 9. Community Outreach

Thanks to our Partners, Supporters and Funders

- Trout Unlimited
- Navarro and Mill Creek Communities
- Salmonid Restoration Federation
- Sanctuary Forest, Inc.
- Salmon and Steelhead Coalition
- California Department of Fish and Wildlife
- North Coast Regional Water Quality Control Board
- Wildlife Conservation Board
- Christopher Woltemade Shippensburg Univ.

For more information: <u>http://mcrcd.org/resources/flow-enhancement</u>:

Linda MacElwee Mendocino County Resource Conservation District linda.macelwee@mcrcd.org (707)462-3664 ext.103 Monty Schmitt The Nature Conservancy monty.schmitt@tnc.org (510) 325-3594

