ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN

Conor Shea - Hydrologist
U.S. Fish and Wildlife Service
Conservation Partnerships Program
Arcata, CA
Learning Objectives

• Examine Landscape and Watershed Controls that Create and Maintain Off-Channel Habitats

• Explain Controls on Typical Off-Channel Habitat Features:
 – Location on Landscape
 – Site Controls
 – Design Concepts
Guiding Principle for Restoring or Creating Aquatic Habitat

Successful Projects:

• Clearly Identify Habitat Goals and Objectives
• Identify and Recognize Landscape and Watershed Scale Controls
• Work With Geomorphic Processes and Remove Constraints
• Incorporate Geomorphically Appropriate Elements and Features
Independent Landscape Drivers

• Geology
 – Controls topography (slope and confinement)
 – Sediment Type and Supply

• Climate
 – Controls amount of water (discharge)
Watershed Controls on Morphology and Habitat
Role of Flow Regime

Flow regime
- Magnitude
- Frequency
- Duration
- Timing
- Rate of change

- Water quality
- Energy sources
- Physical habitat
- Biotic interactions

Ecological integrity

after Karr 1991
Flow and Sediment Controls on Morphology and Habitat

- Bank strength, Wood supply
- Floodplain Sediment
- Valley confinement
- Channel slope
- Channel Substrate
- Sediment supply, Sediment size
- Discharge
Successful Projects Work with Controlling Processes and Remove Constraints

- Climate and Geology
- Watershed Controls
- Flow and Sediment Regimes
- Fluvial Processes & Channel Morphology
- Habitat Structure & Complexity
- Biotic Response
Successful Projects Identify and Recognize Landscape and Watershed Scale Controls
Channel Slope as an Organizing Principle in Habitat Design

Montgomery and Buffington, 1997
Slope Controls on Sediment Properties

UPLAND (STEEP) → LOWLAND (SHALLOW)

- CHANNEL SUBSTRATE SIZE ↓
- BANK COHESION ↑
- FLOODPLAIN SUBSTRATE SIZE ↓
- FLOODPLAIN EROSIVITY ↑
- DEPTH OF ALLUVIUM ↑
- SOURCE TO SINK
Slope Controls on Channel Morphology

UPLAND (STEEP) → LOWLAND (SHALLOW)

- CHANNEL WIDTH ↑
- FLOODPLAIN WIDTH ↑
- WIDTH/DEPTH RATIO ↑
- SINUOSITY ↑
- CONFINEMENT ↓
- CHANNEL PATTERN:
 STRAIGHT ->
 BRAIDED ->
 MEANDERING ->
 DISTRIBUTIVE

Stanley Schumm, 1977
Slope Controls on Habitat Characteristics

UPLAND (STEEP) → LOWLAND (SHALLOW)

- WOOD SUPPLY ↑
- WOOD LENGTH / CHANNEL WIDTH RATIO ↓
- CHANNEL COMPLEXITY ↑↓
- COVER ↑↓
- TEMPERATURE ↑
- TEMPERATURE VARIATION ↓
- SHREDDERS -> GRAZERS -> FILTER FEEDERS
Channel Slope Zones

<table>
<thead>
<tr>
<th>Slope</th>
<th>Category</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ > 5%</td>
<td>Above Anadromy</td>
<td>Fresh</td>
</tr>
<tr>
<td>≈ 1% to 5%</td>
<td>Steep</td>
<td>Fresh</td>
</tr>
<tr>
<td>≈ < 1%</td>
<td>Lowland</td>
<td>Fresh</td>
</tr>
<tr>
<td>< 1%</td>
<td>Estuary</td>
<td>Fresh/Brackish</td>
</tr>
<tr>
<td>< 1%</td>
<td>Tidal</td>
<td>Brackish/Saline</td>
</tr>
</tbody>
</table>

Note: Slope Categories are Fuzzy
Temporal and Spatial Variation in Habitat Use by Salmonids

<table>
<thead>
<tr>
<th>SLOPE ZONE</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWLAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTUARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIDAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Map Habitat Use Through Time and Space
Example: Coho Salmon
- Extended Dry Season
Habitat Varies in Space and Season

<table>
<thead>
<tr>
<th>SLOPE ZONE</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWLAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTUARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIDAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Off-Channel Habitat Design

Clearly Identify Habitat Goals and Objectives

Design Features Should:

• Support Specific Life-stage and Seasonal Habitat Needs
• Conform to Landscape and Watershed Controls
• Address Location within Watershed
Design Elements for Off-Channel Habitat in Steep Channels

Objectives:
- Summer Rearing
- High Flow Refugia

Design Elements
- Use of Bars Features
- Vegetated Bars/Islands
- Anabranche Channels
- Wood Structures
Bar Forms

Bars Require:
- High Sediment Supply
- Variable Flow Regime

Alternate (Point) Bars
- Attached to Bank
- Mobile/Persistent
- Topographic Steering
- Resistant Banks

Medial (Center) Bars
- Split Flow
- Mobile
- Weak Bank Strength
Off-Channel Enhancements Using Alternate Bars

Back Bar Features:
- High Flow Refugia
- Summer Rearing
- Habitat Complexity (High Velocity Gradient)
- Water Quality

Source: Trinity River Restoration Program
Evolution of Cutoff Chutes & Alcoves

Chutes Form When Head Loss Cause Upstream Water Surface to Overtop Bar

Create by:
• Lowering Back Bar Height
• Increasing Head Loss By Adding Wood
Effect of Wood Loading

\[\tau_0 = \rho ghS \]

Increased Wood Loading increases:
- flow depth
- energy slope

Activate Off-channel Areas by Adding Wood

Manga and Kirchner 2000
Habitat Value of Medial Bars

Medial Bars:
• Mobile/Low Stability
• Create Flow Heterogeneity
• Overtopped by Flows Less than Bankfull

Widen Channel Belt by Eroding Banks and Lead to:
• Vegetated Bars
• Islands
• Anabranchn (Split) Channels
Vegetated Bars & Islands

Vegetated Bars
- Bars Colonized by Vegetation
- Persistent
- Overtopped by Flows Less than Bankfull

Islands
- Vegetated Bars which Accumulate Sediment and Grow in Elevation Above Bankfull
- Length Scales to Pool-Riffle Sequence
- Long-term Persistence

Habitat Benefits
- Cover
- Increased Bank Length
- Velocity Complexity
Apex Bar Jam

Abbe and Montgomery, 1996
Apex Bar Jam in Mattole
Engineered Log Jam
Anabranchn Channels

- Channels with Longer Separation
- Multiple Pool-Riffle Sequences
- Island Widths Multiple Channel Widths
- Unconfined Anabranches (Type 5) May Form from
 - Erosion of Floodplain
 - Avulsion into Tributary Channel

Figure 7. (A) Gravel-dominated, laterally active system (type 5); (B) gravel-dominated stable system (type 6)

Nanson and Knighton, 1996
Constructing an Anabranch: Design Issues

- Location
- Entrance Configuration
- Exit Configuration
- Middle Dependent on Boundary Conditions
Anabranch Channel Location

Specific Requirements -- Not Random

• Stable Anabranch Channels
 – 5% - 20% of Total Flow
 – Separated at Flows ≥ Bankfull Discharge
 – Typically Have Slope Advantage $S_s > S_m$

• Entrance at Riffle Head

• Generally on Inside of Bends

• Hard Point at Bifurcation

• Employ Abandoned Channels and Tributary Channels
Stable Entrance Characteristics

- Expanding Approach Channel Width
- Transverse Bed
- Head Drop In Main Branch
- Inlet Step In Side Branch
- Slope Advantage ($S_s > S_m$)
- Limited Bifurcation Angle
- Branch Asymmetry ($W_s << W_m$)
- Flow Separation Above Bankfull

Burge 2006
Confluence Characteristics

- Downstream Bar On Minor Channel Side
- Avalanche Faces At Confluence
- Enhanced Scour in Channel Below Confluence
Design Elements for Off-Channel Habitat in Lowlands

Objectives:
• Wet Season Rearing
• Summer Cool Water Refugia
• Floodplain Access
• Movement
• Cover
• Complexity

Design Elements
• Cutoff Chutes
• Backwater Channels
• Seasonal Wetlands
• Anastomosised Streams
• Avulsions
• Wood Jams
Backwater Channel

Formed Where Downstream Grade Control Elevates Water Surface

Appropriate for Lowland Stream Because:

$$L_b = \frac{h}{S_f}$$
Backwater Channel Design:
Salt Creek
Backwater Sediment Issues

If Sediment Load is present:
- Channel Entrances May Become Blocked
- Off-Channel Pools May Fill with Fine Sediment
- Raising Backwater Height May Result in Channel Aggradation
Anastomosed Streams and Avulsions

Avulsion:
• Rapid shift of channel belt into new location.
• Associated with channel aggradation and sinuous streams.
• New channels typically steeper than original.

Anastomosed Streams:
• Channel form with parallel channels separate by wide, cohesive, vegetated floodplains.
Anastomosing Channel Benefits

- Multiple Channels
- Complex Habitat

Use in Restoration Requires:
- Wide Floodplain
- Low Potential for Land-use Conflicts

Taiya River, AK

Abbe, Brooks, and Montgomery, 2003
Opportunities:
• Access to Off-Channel Habitat
• Cross-basin Connectivity

Hazards
• Channel Capture
• Flooding
• Stranding
Other Lowland Design Issues:

- Lack of Cover and Water Temperature
- Groundwater Connection
- Anoxic Soils
- Riparian Disturbance
Design Elements for Off-Channel Habitat in Estuaries

Objectives:
• Wet Season Rearing
 – Freshwater Refugia
 – Permanently Flooded
• High Flow Refugia
• Movement
• Cover
• Complexity

Design Elements
• Seasonal Freshwater Wetlands
• Wood Jams
• Channel Connectivity
• Cross Connections
• Restore Side-channels
• Tide Gate Improvements
Summary

• Clearly Identify Habitat Goals & Objectives
• Address Landscape & Watershed Controls
• Select Appropriate Design Elements
• Allow Processes to Work