Identifying road related stream crossing erosion and sitespecific storm-proofing techniques

> Pacific Watershed Associates, Inc. Tom Leroy, CEG SRF 2023 Roads Workshop

### **Road related Sediment Delivery**

#### Episodic

- Landslides
  - Cutbank slides
  - Fillslope slides

### Stream crossings

- Washouts
   Stream diversions (gull)
- Stream diversions (gullies and hillslope debris slides)
   Gullies (from road drainage)

#### Chronic

- Hydrologically-connected bare soil areas
  - Road reaches
  - Bare areas (quarries, landings, trails, harvest areas, etc)

# Typical stream crossing configurations and typical problems

# **Unculverted Stream Crossings**



# **Unculverted Stream Crossings**



# Hardened Ford



# Ford with soft bottom



#### **Culverted stream crossing failures**



Wash out (eroded) stream crossing

#### Stream diversion



# Shallow, Short Culvert



# **Plugged Culvert – Crossing erosion**



### Washed Out Stream Crossing



### **Undersized Culvert**



# **Undersized Culverts**

# **Culvert Plugging**



# Plate Arch (Poor Orientation)



# **Stream Diversion**





# Separated Culvert, Collapsing Fill



# Humboldt Crossing, Collapsing Fill



# **Culvert Plugged from Debris Flow**



# **Rusted-through culvert**



# Plastic Burns....



### **Bridge (insufficient capacity)**



# **Reduced channel width**



# Undercut armor



### **Estimation of Stream Crossing Fill Volumes**

Type 1









### Type 3

# **Cross Sections**



#### Stream crossing fill volume standard (Weaver et al., 2006)



# Estimating future sediment delivery from other episodic erosion features (landslides, fill failures, and gullies)



Direct measurement of feature length, width, and depth

### What to inventory and upgrade...

Note: A forward-looking sediment assessment is <u>essential</u> for identification, quantification and prioritization of sites

#### Stream crossings

Culvert capacity (100-yr+)
 Plugging potential
 Diversion potential
 Site erosion (cmp outlet, streambanks, fillslopes, etc)

- Road related landslides
   ✓ Potential road and landing fill failures
   ✓ Potential debris slides in steep swales
   ✓ Larger deeper landslides (1-for-1 rule)
- Road surface runoff and related erosion
   ✓ Hydrologically connected roads and ditches
   ✓ Gullies

# Treating Road Stream Crossings

# What is "Storm-Proofing"

Erosion control and erosion prevention work designed to protect a road, including its drainage structures and fills, from serious episodic erosion during large storms and from chronic erosion during intervening periods.

# **Types of road storm-proofing**

#### Road Upgrading

#### Road Decommissioning



#### Road Upgrading and Watershed Restoration (face the facts...it must be addressed)

- Open, maintained roads are common and often generate and deliver large volumes of sediment to streams
- Most roads in most watersheds are not abandoned and will be upgraded and maintained for future management
  - decommissioning is comparatively rare
- Most open, maintained roads were built decades ago to nowoutdated standards and have weak points that are susceptible to failure
- Most culverted stream crossings are undersized and many have diversion potential
- Most forest roads have high levels of hydrologic connectivity and associated fine sediment delivery

# **Storm-Proofing Your Roads**

Types of road storm-proofing
Objectives and standards
Measures of success
Common techniques

Here's why....

# Practical objectives for road upgrading sediment control treatments

- Reduce failure potential (likelihood)
- Reduce failure magnitude (volume)
- Reduce road related sediment delivery
- Lower, more predictable aquatic and water quality impacts
- Lower cost of storm damage repair
- Less time "out of service" after storms –fewer washouts and road failures
- Potential increased ability to work under "wet" conditions less turbidity
- Increased ability to manage forest resources
## Technical Standards: Road Upgrading

#### Stream crossings

- Upgraded for <u>100 year capacity</u>, including organic debris
- Culvert set on-line and at natural channel grade
- Plugging potential minimized
- Diversion potential eliminated
- Fish passage is accommodated for all life stages

#### Road and landing fills

- Unstable fills that could deliver are <u>excavated/stabilized</u>
- Spoil is placed where it will not enter a stream

#### Road surface drainage

- Road surfaces and ditches are <u>disconnected from streams</u>
- Road drainage structures do not drain onto unstable areas

#### **Technical Standards: Road Decommissioning**

- Stream crossing side slopes: Excavated and sloped at 2:1 or to the grade of natural side slopes above and below the crossing
- Stream crossing channel profile: Excavated at natural channel grade through the crossing with no abrupt grade changes at the top or the bottom of the excavation – the standard is to exhume original channel bed
- Stream crossing channel width: Excavated to match or exceed the natural channel width outside of the influence of the crossing; the design standard is the 100-year flow width
- Road approaches and all road reaches: Hydrologically disconnected to minimize direct runoff into the crossing or into nearby streams
- Road related fill slope landslides: Fillslope landslides with potential for sediment delivery are excavated and removed

## **Storm-Proofing Your Roads**

Types of road storm-proofing
Objectives and standards
Measures of success
Common techniques

# **Measures of success**

#### Road upgrading – resiliency & threat reduction

- Decreased culvert plugging
- No unexpected stream diversions
- Lower frequency of stream crossing washout
- Lower sediment delivery from crossing failure
- Lower frequency and delivery from road fill failures
- Hydrologic connectivity reduced to 10% to 20%, or less

#### Road decommissioning – *eliminate threats*

- Excavated stream crossings exhibit less than 5%, preferably less than 2%, loss of erodible fill volume
- Lower frequency & delivery from road fill failures
- Hydrologic connectivity reduced to less than 5%

## **Storm-Proofing Your Roads**

Types of road storm-proofing
Objectives and standards
Measures of success
Common techniques

# Road Upgrading Treatments

# Four Road Upgrading Treatment Mantras

- 1) Treat sites of sediment delivery
- 2) Treat the cause, not the symptom
- 3) If you don't change anything, it's just going to happen again
- 4) Prevent erosion before you have to try to control it

Road erosion treatments - upgrading

Erosion versus sediment delivery:

# 1) Treat sites of sediment delivery





## 2) Treat the cause, not the symptom





Road erosion treatments - upgrading

 3) If you don't change anything, it's just
 going to happen again...





Road erosion treatments - upgrading

# 4) Prevent things from happening in the first place!





# 1) Treating Stream Crossings

### **Reducing stream crossing vulnerability**

- **Culverted stream crossings** are naturally susceptible to failure. Failures include:

- Plugging and overtopping
- Washout (erosion from various causes)
- Stream diversion\*

- Bridges and fords are usually designed to minimize failure potential

\*Stream diversions cause from 2 to 10 times the volume of erosion and downstream sediment delivery (through gullying and landsliding) compared to simply eroding and washing out a stream crossing fill.

# Methodologies for estimating design storm discharge (Q<sub>100</sub>)

- Rational method equation drainage basins 80 acres and less
- Magnitude and frequency method drainage basins larger than 80 acres
- Flow transference uses discharge records from a nearby hydrologically comparable gaged basin

**Rational Method equation** 

# $Q_{100} = C | A$

- Q<sub>100</sub> = predicted peak runoff from a 100-year storm (cfs)
- C = runoff coefficient
  - = rainfall intensity for the 100-year storm (in/hr)
- A = drainage basin area in acres





Updated USGS Magnitude and Frequency Method (Gotvald et al., 2012)

| Q <sub>100</sub> | = predicted 100-year flow (cfs)                |
|------------------|------------------------------------------------|
| Α                | = area draining to crossing (mi <sup>2</sup> ) |
| Ρ                | = mean annual precipitation (in)               |
| Н                | = mean basin elevation (ft)                    |

North Coast Sierra Nevada Lahontan Central Coast South Coast Desert  $Q_{100} = 48.5 \ A^{0.866} \ P^{0.556}$   $Q_{100} = 20.6 \ A^{0.874} \ P^{1.24} \ H^{-0.250}$   $Q_{100} = 0.713 \ A^{0.731} \ P^{1.56}$   $Q_{100} = 11.0 \ A^{0.840} \ P^{0.994}$   $Q_{100} = 3.28 \ A^{0.891} \ P^{1.59}$   $Q_{100} = 1350 \ A^{0.506}$ 

## Post-fire sediment loading



Predict, prevent, mitigate

Sizing culverts for peak flows, ...including sediment and debris



- Increase culvert diameter to account for debris (so HW/D = 0.67) (per Cafferata, et al. 2004)
- Install a wider culvert (oval or arch)
- Install flared or mitered inlet
- Install trash barrier or deflector
- Install overflow
   culvert or snorkel
- Install arch or bridge



Predict, prevent, mitigate

#### **Reducing stream crossing vulnerability**

<u>New culverts</u> can be **sized** and **designed** (shaped) to reduce the risk of plugging.

**In-channel** and **drainage structure** treatments can be applied to new and <u>existing culverted</u> <u>stream crossings</u> to reduce the chance that a culvert will become plugged, with subsequent flood flows overtopping or diverting down the road.

## **Culvert replacement at base of fill**





## **Culvert replacement at base of fill**





### **Culvert replaced in alignment of stream channel**



## **Reducing stream crossing vulnerability**

### Common techniques for <u>reducing the risk of</u> <u>stream crossing failure</u>:

- Culvert upsizing
- Culvert widening (width and shape)
- Installing wingwalls, flared inlets, mitered inlets and/or beveled inlets
- Installing debris barriers or debris deflectors
- Installing emergency overflow culverts and/or snorkels
- Replacing the culvert with a bridge
- Decommission (abandon) the crossing

# **Culvert with single post trash rack**





#### Some measures used to reduce the risk of crossing failure



#### **Reducing the risk of stream crossing failure**



#### **Reducing the risk of failure**



Drainage structure widening



#### **Culvert upsizing**



Predict, prevent, mitigate

#### **Reducing stream crossing vulnerability**

#### Common techniques for <u>reducing the risk of</u> <u>stream diversion</u>:

- Install a critical dip (properly designed)
- Dip the entire stream crossing fill (lower the fill)
- Install an emergency overflow culvert, with downspout

#### Reducing (eliminating) risk of stream diversion



## **Reducing stream crossing vulnerability**

Common techniques for <u>reducing the</u> <u>magnitude of stream crossing failures:</u>

- Minimize the erodible fill volume (dip or lower the entire crossing fill)
- Minimize overtopping erosion rates (ensure overtopping occurs at a hardened or resistant location – usually the down-road hingeline)
- Armor or harden the overflow spillway (armor the axis of the overflow dip, down the fill face (used only where overtopping is common))

#### Reducing the magnitude of crossing failure



Reducing erodible fill volume

Reducing overtopping erosion rates



Predict, prevent, mitigate

### Fish passage at stream crossings

# Preferred stream crossing designs for fish-bearing streams (NMFS):

- **<u>Preferred</u>** No stream crossing structure (find another place for the road or decommission the existing crossing)
- Bridge (channel spanning)
- Bottomless arch, embedded culvert, embedded or high VAR vented ford (channel width with natural streambed)
- Non-embedded culvert or hydraulic design (low gradient channels only)
- Least preferred On steeper gradient channels, install baffled culvert or a structure with a designed fishway.



# Embedded culvert upgrade for fish passage





# Bridge installation to facilitate

## fish passage


#### Predict, prevent, mitigate

# **Stable stream crossing fills**

#### **Designing stable stream crossing fills:**

- Avoid clay rich or cohesionless soils
- <u>Fills should be compacted</u> during optimal moisture content (moist) in 6" to 12" lifts; Fill face compaction is achieved through excavation of the compacted fill
- <u>Vibratory rollers</u> are used for low cohesion soils, <u>sheeps foot</u> <u>rollers</u> for cohesive soils, and <u>mechanical tampers</u> for cohesive soils along the culvert bed and flanks; <u>Field compaction</u> using rubber tired equipment and dozer tracking may be acceptable under ideal moisture conditions
- Strive for <u>fillslope angle</u> less than 1½:1, preferably 2:1 or less, or buttress/armor the slope
- <u>Revegetate</u> fillslopes, <u>divert road surface runoff</u>, and <u>armor</u> culvert outlet and fillslopes where necessary (steep fillslopes)

### **Stable stream crossing fills**



Vegetated 2:1 fillslope with extended culvert outlet and minimal armor

Armored 1:1 fillslope, with dense internal compaction, on steep Class III channel



# Fillslope buttressing and barrel projection



#### Predict, prevent, mitigate

# **Stream crossing culverts**

- Culvert materials: steel, aluminum, concrete, plastic
- **Durability**: abrasion, corrosion
- <u>Sizing</u>: Rational, USGS Magnitude and Frequency, Flow transference
- Alignment and length: vertical, horizontal
- <u>Debris treatments</u>: Debris rack (barriers and screens), debris deflectors, risers
- Inlet treatments: mitered inlet, tapered inlet, flared inlet, beveled inlet, slope collars, headwalls, snorkels, risers
- **Emergency overflow culverts:** sizing and design

Predict, prevent, mitigate

### **Other stream crossing structures**

- Bridges: Log stringer (no longer common), I-beam (engineered), truss (Bailey)(up to 200'), and rail car (up to 90')
- Armored fills and vented fills
- Fords (native), hardened fords, and vented fords
- Temporary stream crossings (fill, culverted fill, log, and bridge)

### **Other stream crossing structures**



### **Other stream crossing structures**



Road erosion treatments - upgrading

# Armored fill crossings





Road erosion treatments - upgrading

# Armored fill crossings



### Armored fill with large diameter rock



### Armored fill displaying adequate keyway cross section





## Special considerations in Upgrade Treatments

- Paved roads
- County Roads (paved/unpaved public roads)
- Main Line USFS roads (paved and unpaved)
- Roads in the snow zone
- Steep roads (>~12%)
- Road use types and levels (speed and clearance restrictions; e.g., lowboys, FedEx and BMWs; commercial roads vrs subdivision roads)
- Stream crossings in debris flow channels

### SUMMARY

# Measures of Success for Road Upgrading Treatments

#### Road upgrading

- Decreased culvert plugging
- No unexpected stream diversions
- Lower frequency of stream crossing washout
- Reduced sediment delivery from crossing failures
- Lower frequency and delivery from road fill failures
- Hydrologic connectivity reduced to 10% to 15%, or less!

# **Poor rock armor application**





# **Road Decommissioning**

Common Techniques: Road Decommissioning

- 1) Ripping or decompaction
- Cross-road drain construction or outsloping
- 3) Excavation of unstable fillslopes
- 4) Stream crossing removal
- 5) Endhauling and spoil disposal









# **Ripping and decompaction**



# Decommissioned Road

Decompaction or Road Ripping:

- ✓ Increases infiltration
- ✓ Reduces runoff

Promotes vegetation



# Road Decommissioning



### **Cross road drains**



# Decommissioned forest road

### Road ripped and cross-road drained

(straw mulch was added to improve microclimate & promote revegetation)



#### Road erosion treatments

#### Excavate unstable fill

(local spoil disposal against cutbank)





### In-Place Outsloping Local spoil disposal



(local spoil disposal)





# Export Outsloping

(spoil endhauled)



### Import outsloping

(spoil hauled to site and used to outslope stable road)



### Trail outsloping (road to trail conversion)





### Trail outsloping (road to trail conversion)





## Trail outsloping (road to trail conversion)





### Road Obliteration (total recontouring)



#### Stream Crossing Decommissioning (small = <250 yd<sup>3</sup>)



### Stream Crossing Decommissioning (medium=250-500 yd<sup>3</sup>)



Before



After



Decommissioned stream crossing (large = >500 yd<sup>3</sup>)



Decommissioned stream crossing (large)




Decommissioned stream crossing (large)





### Decommissioned stream crossing (large)





Decommissioned Class I stream crossing (fish passage)



Unstable road and landing fillslope excavation



## Measures of success for Road Decommissioning Treatments

### Road decommissioning

Stream crossing decommissioning prevents at least 95% of predicted erosion and sediment delivery.

Decommissioning results in a lower frequency & delivery from road fill failures

Hydrologic connectivity is reduced to less than 5%

Road erosion treatments - decommissioning

### **Typical errors in road decommissioning**



Potential Problems: Bank Erosion and Channel Downcutting

#### Insufficient channel width

Incomplete excavation





### **Problems: Side Slope Failures**



Spoil disposal on sideslopes of decommissioned stream crossing

Additional Resources

Handbook for Forest, Ranch and Rural Roads:

Focus on stream crossings and hydrologic connectivity

William Weaver Pacific Watershed Associates

#### Handbook for Forest, Ranch & Rural ROADS



#### EL LIBRO VERDE MANUAL DE CAMINOS FORESTALES Y RURALES



# Useful References (cont)

K C

7

N

Associates

**Ridge to River** 

**58 Minutes** 

#### The goals of this video and the companion Forest and Ranch Roads Handbook are to assist landowners in:

- Making roads safer and more reliable in all kinds of weather
- Maintaining downstream water quality by avoiding excessive erosion caused by the road
- Reducing road maintenance costs
- Avoiding litigation as a result of excessive erosion such as violations of the Clean Water Act, or property damage to downhill or downstream neighbors
- Low impact and low cost roads in the future



Copies of this video and the Forest and Ranch Roads Handbook are available from

#### **MENDOCINO COUNTY RESOURCE CONSERVATION DISTRICT**

405 S. Orchard Avenue Ukiah, CA 95482 (707) 468-9223 www.mrcd.ca.nacdnet.org Funded by California Department of Forestry and Fire Protection and California Department of Fish and Game



A guide to improving, repairing and restoring roads for water quality, fish and humans.

## Upslope Inventory and Sediment Control Guidance



State of California California Natural Resources Agency Department of Forestry and Fire Protection



Designing Watercourse Crossings for Passage of 100-Year Flood Flows, Wood, and Sediment (Updated 2017)

California Forestry Report No. 1 (revised) Peter Cafferata, Donald Lindsay, Thomas Spittler, Michael Wopat, Greg Bundros, Sam Flanagan, Drew Coe, and William Short August 2017

