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Session Coordinators: Gabriel Rossi, Ph. D., Research Scientist, UC
Berkeley and California Trout Coastal River Ecologist

Recent work in watersheds from Alaska to California has emphasized the central role of food in salmon resilience and
recovery. A foodscape perspective expands our view of watershed management to consider the sources, phenology, and
pathways of key food resources. It also focuses our attention on the conditions that allow salmon (and other mobile
consumers) to track and exploit feeding opportunities across the riverscape. Like every aspect of salmon habitat, the
foodscape has been (and continues to be) altered, simplified, and often severed. But unlike work on fish passage, water
quality, or instream flow, we are only now beginning to realize the challenges and opportunities for recovering and
maintaining healthy, functional foodscapes.

Join us as we examine “foodscapes in action” — specific projects and places where foodscape thinking is being applied to
salmon conservation and recovery. This session will bring together stewards, managers, and researchers, who are
developing methods to study, monitor, and restore foodscapes. We will consider foodscapes in relatively intact watersheds,
which shed light on the key trophic pathways and spatiotemporal patterns of foraging and growth potential that support
salmon populations. We will also consider foodscapes in heavily impacted systems, which provide a novel lens to consider
how alternative restoration actions promote diverse and connected foraging and growth opportunities for fish. In both
contexts, foodscape thinking reveals opportunities to find new and productive tools that can help move the needle on salmon
population abundance, diversity, and resilience — opening new possibilities for watershed stewardship and bringing optimism
in a time of ecological crisis.



Presentations

Food for Fish: Challenges and Opportunities for Quantifying Foodscapes in River Networks
Aimee Fullerton, Ph.D., NOAA FiSREIIES. .. .. ... e e e et remote presentation, Slide 4

Foodscape Perspectives on Juvenile Coho Salmon Rearing Strategies in the Russian River Watershed
Mariska Obedzinski, California Sea Grant & UC Berkeley...........c.oiiiiiii e, Slide 5

Causes and Consequences of Variation in Rearing Strategies in Juvenile Coho Salmon
Henry Baker, PND, UC BEIKEICY ........... . e e e e e e et e e e et e e e ee e eaaas Slide 45

River Rest Stops: The Effects of Floodplain Food Subsidies on Chinook Outmigration Transit Time
Adrian LOCIA, UC DaAVIS. ... ... e e e Slide 98

Towards Process-Based Recovery Planning
Jacob Katz, PhD, CalifOrnia TrOUL. . ... ... ... e et ettt e, Slide 126

World-Wide Patterns of Invertebrate Drift Abundance with Implications for Drift Feeding Fishes
Tyson Hallbert, PRD, UC DaAVIS...........c.oo e e ettt et et ea e eaans Slide 199
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https://vimeo.com/1082291913

Foodscape perspectives in the Russian River watershed
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Outline

1. Investigating early emigration of juvenile coho salmon in
the Russian River

2. Foodscape perspectives on salmonid recovery in the
Russian River



Coho life cycle and juvenile life history diversity

(e.g., Ebersole et al. 2006; Koski 2009;

Roni et al. 2012; Jones et al. 2014,

2021; Bennett et al. 2015; Baker et al.
- 2025; Munsch et al. 2025)

\




Importance of juvenile life history diversity




Bet hedging




Increasing productivity: more and/or bigger fish




Questions

1. Does early emigration occur near the southern extent of
the coho range?

2. What factors explain juvenile emigration timing?

3. Do juveniles that emigrate early contribute to adult
returns?



Russian River Watershed

e Listed populations of steelhead,
coho, and Chinook

coho/steelhead
—— Chinook

—— steelhead

 Small remnant wild population of
coho with annual releases of
juveniles from a conservation

hatchery

* Rainfall-dominated hydrograph with
common intermittency



Study streams

Russian River Watershed

Hatchery releases of juvenile
coho in fall

4 streams & 11 years
Genetically similar family groups

15% of juveniles PIT-tagged
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Questions

1. Does early emigration occur near the southern extent of
the coho range?



Juvenile coho emigration timing

early emigrants (<3/3)
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Emigration timing across streams and years
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Estimated probability of emigrating early (< 3/3)
using a multistate emigration model

89,728 individual
encounter histories
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Questions

2. What factors explain juvenile emigration timing?



Potential factors influencing probability of early emigration

e Geomorphic: amount of floodplain habitat

 Hydroclimatic: flow and temperature

* Biotic: density and individual size

* Constructed models with different covariates to evaluate
relative influence of these factors on early emigration
probability



Geomorphic factor: Valley bottom area (vba)

valley bottom area (km?)
vba =

total watershed area (km?2)

Valley bottom extraction tool (V-BET) (Gilbert et al. 2014)



High vba Low vba

Willow
7.9%

Green
Valley
9.4%




Hydroclimatic factors: winter flow and temperature

Duration of high flow Mean temperature
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Biotic factors: density and size

Fall density of juvenile salmonids Individual fork length (mm)




Vba: flow interaction

Expected flow to have a stronger effect on early emigration in streams
with less floodplain habitat (lower vba)




Covariate model set

Model

AlCc weight

Covariate effects

Likelihood

vba + flow + density +
temperature + size + vba:flow

0.9

1.0 vba 4

vba + flow + density + size +
vba:flow

0.1

flow -

0.1 temperature -

vba + flow + density +
temperature + size

0.0

density -
0.0 /

size -

vba:flow 1

-3.5

-2.5

flow 1

temperature -
density

size

vba:flow 4

P

04 02 00 02 04
Estimated beta coefficients




Questions

3. Do juveniles that emigrate early contribute to adult
returns?



Early emigrants contribute to adult returns Bl cory emgrn

spring smolt

e 155 adults detected on PIT antenna arrays throughout the watershed

* 15% were early emigrants but varied by subwatershed and cohort

Overall Willow Dutch Bill Green Valley
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. early emigrant

Early emigrants contribute to adult returns

spring smoilt

e 155 adults detected on PIT antenna arrays throughout the watershed
* 15% were early emigrants but varied by subwatershed and cohort

Proportion of total

2014 2015 2016 2017 2018 2019 2020 2021 2022




Early emigrants may a critical role in years with streamflow
disconnection in early spring

stream disconnection




Outline

2. Foodscape perspectives on salmonid recovery in the
Russian River



Russian River coho salmon: endangered status

Adult Coho Salmon Returns to the Russian River
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Still a long way to go...

Adult Coho Salmon Returns to the Russian River

NMES delisting target
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Increasing productivity: more and/or bigger fish










Evidence of high growth opportunity in non-natal rearing habitat

Juvenile steelhead summer growth
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Russian River coho
salmon life cycle

Adults Once in the
ocean, smolts will
feast on smaller fish
and shrimp until they
mature into adults
Coho will usually
stay in the ocean for
about 18 months.

Smolts After about a year, fry
transform into silvery smolts
and migrate downstream <7
to the ocean. This usually
happens in the spring.

Spawners Coho transform into spawning
adults and, generally, return to the stream of
their birth to lay eggs before they die. Most

» coho return when they are three years old, but

some (known as jacks) return a year early.

Eggs are laid in coarse
gravel in the winter.

Alevin are tiny salmon
that hatch from their eggs
and survive on nutrients
in their yolk sacs until
they are absorbed in a few
weeks and they emerge as
free-swimming fry.

Fry, or “young-of-the-year”
(yoy), are young fish with
stripes called “parr marks".

California Sea Grant
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Part 1: Variation in movement
within a single creek affects
population dynamics

Part 2: Variation across the
riverscape affects the frequency
and phenology of non-natal
rearing




Endangered Central California Coast Coho Salmon

Central California Coast

Coho Salmon : N Russian River Salmon and Steelhead Monitoring Program
Evolutionarily Significant Unit ————
Curront a3 of January 2013

Central California Coast Coho Salmon

@ PITAntenna
Life Cycle Monitoring Watershed
o Adult Release into Dry Creek
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Diversity begets stability
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Part 1: Intrapopulation variation in rearing stabilizes
population dynamics

Russian River Salmon and Steethead Monitoring Program
B Rl e R
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Research Questions:

1. Do juvenile coho salmon in Willow Creek exhibit variation in movement
phenology and rearing strategies?




Research Questions:

2. What are the consequences of variation for population dynamics?




Research Questions:

3. Is variation in movement associated with

a. Flow
b. Intraspecific competition




Coho salmon in Willow Creek exhibit two movement patterns

Non-Natal Natal

|

PIT antenna == Non-natal habitat Grassland

Smolt trap === Natal habitat Shrub/Forest




Non-natal rearing disproportionately contributes to adult returns

Non-Natal

Natal




Non-Natal




Non-natal rearing disproportionately contributes to adult returns and
bolsters population stability

Non-Natal

Natal




Non-Natal




Adult returns may be mediated by differences in emigration timing
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Adult returns may be mediated by differences in emigration timing
and growth rate
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e H1: Higher fish densities
increase the proportion of
non-natal rearing

e H2: Higher flow increases the
proportion of non-natal rearing




Non-natal rearing is reduced in low flow years
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Non-natal rearing is reduced in low flow years, but is unrelated to
intraspecific competition

© ©
. -~—
© W)
& T
c c
o o
c c
c c
S o
£ €
o o
Q. Q.
o 2
a a

100 200 2000 3000
Mean daily flow (cfs)

for 14 days after release Fish released
















Part 1 Conclusions:

e Juvenile coho exhibit bimodal variation in
downmigration timing

e Non-natal rearing increases the frequency
and stability of adult returns

e Differences in growth rate and emigration
timing provide plausible mechanisms for
decoupling dynamics between rearing
groups

e Drought may exacerbate population

ECOLOGY LETTERS

LETTER @ OpenAccess @ @

Variation in Salmon Migration Phenology Bolsters Population
Stability but Is Threatened by Drought

Henry K. Baker 3% Mariska Obedzinski, Theodore E. Grantham, Stephanie M. Carlson

First published: 23 February 2025 | https://doi.org/10.1111/ele.70081




Part 2: Non-natal rearing in other tributaries

Russian River Salmon and Steelhead Monitoring Program

Do recipient habitat characteristics affect the
frequency, phenology, and location of non-natal
rearing?

e Stream gradient
e Position within the river network




Part 2: Non-natal rearing in other tributaries

Do recipient habitat characteristics affect the
frequency, phenology, and location of non-natal
rearing?

e Stream gradient
e Position within the river network

1,794,884 records of 374,969 individual fish

e Non-natal rearers: 31,639 observations of 2738
individual fish (0.73% of all fish)

Russian River Salmon and Steelhead Monitoring Program




Low network position yields more non-natal rearers;
Stream gradient affects location of non-natal rearing
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Low network position yields more non-natal rearers;
Stream gradient affects location of non-natal rearing
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Phenology of non-natal entry
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Stream gradient affects phenology of non-natal habitat use
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Stream gradient affects phenology of non-natal habitat use
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Stream gradient affects time of day of non-natal habitat entry
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appreciated.

Even subtle diversity can have large effects on population
dynamics.

Managing for diversity will improve outcomes.

Large datasets are required to understand ‘alternate’ phenotypes.
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Classifying natal and non-natal rearing coho

Fit finite gaussian mixture model

et

Simulate data based on model

Find threshold that minimizes
classification error

¥

Apply threshold to empirical data

Sethi et al. (2017) Fisheries Research



No differences in size at release
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Wild fish also exhibit bimodal variation
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River Rest Stops: The
Effects of Floodplain
Food Subsidies on
Chinook Outmigration
Transit Time

Adrian Loera
M.S Student Lusardi Lab UC Davis

Funded by CalTrout and The Bureau of Reclamation



Background

* Historic records show
California’s chinook salmon

population decline as early as
1920’s

* CA central valley salmon
population has decreased to
less than 75% of past
numbers

 Fall/Late-Fall run salmon are
listed as a species of concern;
Spring run are threatened; and
Winter run are endangered




* Channelization has created river disconnect from valuable floodplain
habitats

* No longer have access to connecting floodplains
* NO ACCESS TO FLOOPLAIN = NO FOOD




Reconnecting
Resources

In 2017 California Trout launched the Fish Food
Project

High residence time of water in these floodplains
creates dense zooplankton assemblages

The project has shown the potential to bolster depleted
food resources and help struggling fish populations



Michael £ Wiek

Rough and Ready Water Pump

Water Export site

Knights Landing, CA




Need for better
understanding

* Current support for Fish
Food Program is through
caged fish data

* Need for an
understanding of
free-swimming behavior
at these sites




If fish are utilizing
subsidy, it can better
inform salmon
management practices

Big picture Release salmon during
times of high river
productivity




Research Questions

Will outmigrating
salmon spend longer
times in subsidized
portions of the river?

)

Do floodplain food
subsidies have an
effect on salmon

outmigration times?

)




Acoustic Telemetry Array

Methods Zooplankton Sampling

Fish Growth Monitoring
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Acoustic Array

* 5 Tekno receivers (recovered)
e 2 additional recs downloaded

* 13.18 river km long
* Deployment date: Jan 2023 Recovery date: May 2023

* 800 possible tagged fish released at Red Bluff as part of
NOAA Fisheries “Seasonal Survival Hatchery
Experiment”



Zooplankton Sampling
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2023 Preliminary Results




River Zooplankton Abundance
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Growth Rates

Start date 2/10/2023 FiSh FOOd Export 2023 End date 3/6/2023

Upstream
Growth Rate:
0.152 mm/d

0.667 mg/d

Floodplain Outlet
Growth Rate:
0.514 mm/d
4.9 mg/d
~7.3X upstream

6 miles
Downstream
Growth Rate:

0.28 mm/d
2.2 mg/d
~3X upstream



Fish Ground Speeds

Over 200 different tagged fish were picked up by the array



8 hrs in array

River Flow
RiverKm over Time for HexID: 5298

245

Unsubsidized Zone

Transit
Plot (fast
fish)

Mar 10 06:00 Mar 10 12:00 Mar 10 18:00
First time detected




1 Day and 6 hrs in array

Transit
Plot
(medium

speed)

River Flow
RiverKm over Time for HexID: 4D9E

245

Unsubsidized Zone

Mar 10 00:00 Mar 10 12:00 Mar 11 00:00

Mar 11 12:00
First time detected



1 month and 3 days in array

River vFIow
RiverKm over Time for HexID: 51AC

245

Unsubsidized Zone

Transit
Plot (slow
speed)

Feb 27
First time detected




Avg speed above pump -> 2.36km/h
Avg speed below pump -> 2.63km/h

Average Fish Speed Through Array

S~
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Speed (km/h)

—

Location

ANOVA P = 0.0267



Avg speed pump ON -> 2.52km/h
Avg speed pump OFF -> 2.86km/h

Fish Speed Through Subsidy Zone
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ANOVA P=0.0379



Avg speed LARGE SUB -> 2.18km/h W—
Avg speed LESS SUB -> 2.84km/h

Fish Speed Through Subsidy Zone

=3
=
X
o
o 2
Q.
(%)
®
1 s
[ ]
[ 4
$
¢
0 °
g,o"é& ggoé‘&
g@c eﬁ%
NS \
River Zoop Density

ANOVA P=1.11e”-05



Findings




What's Next

Include river flow effects in Look into if fish size at release Compare outmigration success
transit times had a possible effect. Food rates of fish that passed
mode vs migration mode through a time of subsidy
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e 2 additional receiver detections
downloaded for ERDDAP database

e Each individual fish graphed on
waterfall plot

* Raw detection files downloaded into
R and filtered for accuracy

Telemetry Data * Filters include: False Detection,

Predation Events, Single
detections & minimum # of
receivers hit




River Zoop Biomass Per M3
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Fish Food for Thought

ivot to process

Jaédb Katz — California Trout

FISH-WATER-PEOPLE



Process-Based Reconciliation

Integrating a working knowledge
of natural process, into the
management of natural resources







Wetland—Rlver Corrldors




Fluvial Processes









Sac Valley Defined by its Puddles

Stockton
L]

: m~y
San Francisco




Canalized



Thousands of miles of levees
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Fish belong in the river...




...and the river belongs in its banks.




“The latest proposal to
build canals or by-passes
within the overflow
basins, so that they will
be readily drained as the
river falls, would be the
saving of myriads of fish,
and especially of salmon
fry, and should be
encouraged.”

-N. Bishop Scofield,
1911

STATE OF CALIFORNIA FISH AND
GAME COMMISSION FISH BULLETIN
NO. 1



Dramatic effects of flow on habitat area

25000

20000 OO gudAYS .

15000

10000 -

5000 & Sacramento River ——

Area < 2m (ha)

0 500 1000 1500 2000 2500 3000
Flow (cms)

SOmmer et al. (2004)






River Floodplain

Jeffres et al. 2008
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but maybe
by looking
back, we can
reconcile
the world

we’ve
inherited wit
the one we
desire

Sacramento

Antelope
Creek

Mill
Creek

Putah Creek

. /’

Current Wetland
Current Riparian
Other Lowland Habitat
Rivers & Streams
[ wildlife Refuge
[ Legal Delta Boundary

White area represents former historical
river floodplain habitat that is converted
mostly to agricultural and urban uses.

Bear River

American (7
. I
River,

S
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Success Fills the Sky
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Mimicking natural floodplain processes
in post-harvest floodplain rice fields on Yolo Bypass
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March 12 — Week 6 — released from rice field

Katz et al. 2017
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Floodplaih

MR i e i e ] ML LTI
Photo: ] Katr ; . 3-11-2016



The Food is on the Floodplain
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Flooding (ephemeral inundation)
facilitates energy transfer into river

food webs

s AQUATIC BIOPRODUCTIVITY
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The Process Doesn't

Happen Instantaneously

Zooplankton/
Invertebrates
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® MAKING FISH
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@ TAKES TIME!

Zooplankton/
Invertebrates
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Residence Time of Water
2.15days  23.5sec 1.7 sec
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Spread it—Slow it—Sink it—Grow it
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Slow 1t = Grow It

Start Date: 2/24/2020 Short Residence Time ~ 30 minutes e End Date: 3/30/2020
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Lens formation and diet reconstructions

Floodplain Multiple habitats

River

Delamination

e




Quantifying the role of floodplains as nursery
habitats for salmon populations

Juvenile
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Floodplain opportunity Survivors
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SUTTER BUTTES AND ORCHARDS [N ELOOM
















SUCCESS ON BUTTE CREEK

Butte Creek is one of only four Sacramento River
tributaries with remaining populations of the
endangered spring-run Chinook salmon. Resource
agencies and conservation groups value Butte
Creek as a keystone in preserving and recovering
spring-run salmon, which in some years had dwin-
dled to less than a 100 returning adults from 1970
to the early 1990s. Today, as a result of the Butte
Creek Fish Passage Improvement projects, in
tandem with a valuable food supply and safe rearing
habitat in the Sutter Bypass wetlands, more than
10,000 spring-run salmon return on average to
Butte Creek. These projects all provide multiple
beneficial uses, serving water for fish, farms, birds
and various other species.




BUTTE GREEK SPRING-RUN CINOOK SALMON POPULATION ESTINATES
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A3tmember organization representing landowners, irrigation districts, higher education, and conservation
" F LO OD P L | & I N groups. The coalition, and the collaborative model of dynamic conservation, has resulted in farms, refuges,
F 0 R w A R D and managed wetlands providing essential habitat for waterfowl and shorebirds aswell as potential food

production for endangered fish species.

The Nigiri Project Conaway
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FLOODPLAIN
REACTIVATION

In the Sacramento River Basin
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Wet Side
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Floodplain Salmon Habitat in Yolo Bypass—Drier Years (1997-2012)
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Luke Tillman, Noelle Patterson,

Chris Campbell cbec engineering
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The mathematics of recovery



Pre-development Today

Loss of Seasonally Inundated Floodplain



A process-based definition of
salmon habitat:

"The spatiotemporal patterns of
biophysical condition which arise
(and to which salmon respond)
as water interacts with the
riverscape though which it flows."



The Life Cycle: Characterize each life stage (from gravel to gravel).

The Niche Cycle: Characterize the ecological function(s) required
for each life stage to matriculate to the next.

The Habitat cycle: Characterize the sequence of biophysical
conditions required to fulfill each link in the niche cycle.

The Process cycle: Characterize the landscape-scale
biogeomorphic processes which synergistically interact to create
and sustain the sequence of biophysical conditions (4-D habitat
mosaic) to which individual salmon actually respond.

Process Interruption: Identify and characterize the human
infrastructure and land use(s) that interrupt these biogeomorphic
processes thereby limiting riverscape capacity to provision the
diverse life-history trajectories from which population resilience
emerges.



We don’t manage salmon.

Nor, in truth, do we manage the rivers on which
they depend.

Or even the landscapes through which those
rivers flow.

What we can manage is the behavior of people.

The Pivot to Process provides a means to identify
where, and characterize how, human endeavor
Interrupts the capacity of a riverscape to provision
the range of biophysical patterns required to
produce resilient, abundant populations of
anadromous salmonids.



Only when human endeavor no
longer interrupts the landscape-
scale biogeomorphic forces which
create and sustain the mosaic of
biophysical conditions, access to
which facilitates each life stage to
matriculate to the next, do we
have a right to expect a
population-level response —
Recovery.
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Questions?

Carson Jeffres



Worldwide patterns of invertebrate drift abundance
with implications for drift-feeding fishes
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Tyson B. Hallbert

Postdoctoral Scholar
Center for Watershed Sciences
University of California, Davis



Foraging ecology of stream-dwelling salmonids

 Invertebrate drift P
. i ’%v\m
« Continually renewing -
Flow <= == :
 Does not accumulate |—— .

‘»

» Central place foragers
» Daytime

Predation cycle for drift-feeders: prey search, prey assessment,
pursuit and attack, handling and ingestion of prey, then returning
to search again
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Spatially and temporally variable within and between streams

Salmonids must capitalize on high prey densities during resource pulse
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Do fish in streams forage at similar rates when exposed to
natural prey densities?



Questions

Do salmonids display a functional response to increasing prey
availability in natural streams?

* Foraging rates?

e Dirift densities?



Methods

Filmed cutthroat trout foraging behavior
in five Idaho streams

Drift samples

Measured:

» Location of foraging attempts
* Benthic
* Water column
» Surface

« Calculated foraging rates



Sorted drift samples
Measured and enumerated invertebrates

prey energy content (joules - prey1) = 0.3818 (mean length of prey (mm))246

Smock, 1980



RER S

 Fish filmed: 15 cutthroat trout

 Video durations: 2 min 44 sec - 36 min 52 sec
* Fish body size: 33 - 322 mm in length

e Drift density: 1.69 - 61.09 invertebrates - m3

e Foraging rates: 0.30 — 6.15 captures - min-3




Drift foraging rates:
Water column + surface
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Hallbert & Keeley 2024



Maximum foraging rate 5.24 captures - minute !
15 invertebrates - m-3 of water

Logqpforaging rate +1 (Captures-min'1)
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« | Maximum energy intake rate 66.8 J - min-t
24 invertebrates - m3 of water
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Drift density (ind-m™) Hallbert & Keeley 2024




Questions

What is the magnitude of invertebrate drift abundance across
streams?

What is the range and extent of foraging rates in drift-
feeding fishes?

Do temperature, precipitation, and geographical variables
predict drift abundance?



Methods Literature survey

 Drift density
» Collected during daytime
e Units of number - m3

« Covariates
o Latitude & longitude
* Elevation
» Three temperature and three precipitation variables from Waorlclim
 Net mesh size

e Stream

* Model selection methods (mixed effects multiple regression)
 Drift foraging rate

« Daytime drift foraging rate in natural streams
* Units of captures - min-1
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70 studies 348 drift observations from 142 streams across 23 countries
within six continents
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Seven models within 2 AIC_ from top model
Global-model accounted for 35% (marginal R?= 0.352)

Both fixed and random effects explained 84% of variation (conditional R?= 0.843)



30 studies
385 observations
19 species

14 salmonid

Drift foraging
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Conclusions

e Most reported drift densities were low

Food availability likely limits productivity in many populations

* Foraging rates for drift-feeding fishes were low

Foraging rates paralleled drift densities

« Latitude?, elevation, net mesh size, and PDQ were top
predictors of drift density

Mid-latitude regions where many drift-feeders are
native to had higher drift abundance
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Energetic contributions of alternative foraging modes

Habitat thresholds and switching



Questions?

Coauthors:
Ernest Keeley
Ryan Whitworth
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Colden Baxter
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tysonhallbert@gmail.com
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Sciences
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