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Session Coordinator: Karen Pope, USDA Forest Service

Climate change represents a major threat to freshwater aquatic ecosystems in California and the Pacific Northwest, home to
important but increasingly sensitive taxa, including salmonids. The impacts of climate change on certain freshwater ecosystems
may be ameliorated by the engineering activities of beavers (Castor canadensis), which were once common throughout North
America but experienced dramatic declines due to fur harvest in the 18th and 19th centuries. Many streams and rivers have not
been recolonized by beavers due to a lack of local source populations or because the habitats have been simplified and
degraded, impairing beaver recolonization. Strategic stream, meadow, and river restoration applications with beaver and process-
based restoration (PBR) have the potential to play a larger role in the multi-tiered efforts to manage pressing climate-related
threats to forests and water supply by increasing resistance to wildfire, increasing base flows, and reducing sedimentation in
unwanted reaches and reservoirs. In these systems, beaver restoration and PBR have the potential to recover stream complexity,
increase surface and groundwater storage, and regain floodplain connectivity, resulting in improved salmonid habitat. However,
we are just beginning to develop the restoration tools, scientific backing, and workforce to meet the demand for increasing the
pace and scale. For example, we launched the new California Process-Based Restoration Network in 2022 with the goal of
increasing capacity to restore degraded riverscapes in California (calpbr.org). In addition to building the human capacity to
implement restoration projects, research and monitoring remain important for understanding and identifying where and when
beaver restoration and PBR can succeed and what approaches are best to maximize ecohydrological benefits. The primary goals
of this session are to (1) share what has been done, how it is working, and the scientific basis that supports it; and (2)

explore the various impediments to scaling up the more effective practices.
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Occonv Aus YU ING BACK THE BEAVER CAMPAIGN

Education & Outreach

Citizen Science

Research & Demonstration

Policy Change

CALIFORNIA REPUBLIC

Bring Back the Beaver OAEC.org/beaver
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In June 2022 the CA Ieglslature passed Governor Newsom’s bljd'get that funded the
creation of the new CDFW-led Beaver Restoration Program

* 5 permanent positions, ongoing funding

*  Promote human-beaver coexistence strategies

* Develop Beaver Management and Restoration Plan

e  Conduct beaver translocations (for restoration purposes)
*  Conduct outreach and education
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NEW CDFW DEPREDATION PERMIT GUIDANCE ISSUED IN JUNE 2023

CDFW shall:

* Document all nonlethal measures taken by the landowner t
prevent damage prior to requesting a depredation permit.

* Require implementation of feasible nonlethal corrective
actions by the landowner to prevent future beaver damage.

* Determine whether a property is located within the range of =
listed species and add permit terms and conditions to protect
native wildlife.

£

¥

* Continue to prioritize issuance of depredation permits if it
determines that an imminent threat to public safety exists,
such as flooding or catastrophic infrastructure damage.



bt FOR THE FIRST TIME IN NEARLY 75 YEARS CDFW RELEASES BEAVER

At Tasmam Koydm (Plumas County) in collaboration with the Maidu Summit Consortium
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HOW DID WE
GET HERE?
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IDENTIFYNG AND RESOLVING HISTORIC AND CURRENT
SOCIAL AND INFORMATIONAL BARRIERS

Beaver Range

PROBABLE FOAMER HRNGE OF SHASTA BEAVER,
CASTOR CANADENSIS SHASTENSIS

Current range

o Historic range

Ouiside confirmed
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proposed range
Drainage divide of
Sacramento/San

Jogquin and South
Coast

e RIVOTS

@ Lakes

| County Boundaries

2 PROBABLE FORMER RANGE GF GOLDEN SEAVER,
E H

T
CASTOR CANADENVSIS SUSSURATLS J»

FROBABLE FORMER RANGE OF SONCRA BEAVER,
CASTOR CANADENSIS REPENTINUS

CALIFORNIA'S |
BUSY BEAVERS
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BEAVER DAMS IN THE MOUNTAINS SAVE WATER

YOR Vidd, WILDLITE AND AGRICULTUAN .

"16. 2. DProbable former range of beavers in Czlifornia, with locatlon of sites where

Novel Phy5|cal EVldence that Lewtvers have necn travs platicd by governmental agencies in recent years.
Beaver were Natlve to the The Historic Range of Beaver in the The Historical Range of Beaver in

. Sierra Nevada Coastal California (Update)
Sierra Nevada
Lanman et al. 2012 Lanman et al. 2013
James and Lanman 2012 California Fish and Game Journal California Fish and Game Journal

California Fish and Game Journal

https://oaec.org/publications/historical-range-of-beaver-update/




PROMOTING UNDERSTANDING THAT BEAVER RESTORATION
REQUIRES A HOLISTIC APPROACH WITHAVARIETY OF ACTIONS
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LEGITIMIZING AND INCREASING LITERACY BY
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. Evolving Science and Policy to Restore Streams Using Instream
Obstructions and Beaver Dam Analogues

e R T R s ek 3
| Integrating Flood Management, Steelhead, Beaver and Wildlife |
B Habitat Restoration in the Napa River Watershed
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SUPPORTING THE SCIENTIFIC COMMUNITY IN STUDYING AND
;S/lﬁ!ARINGR ULTS ABOUT POTENTIAL BENEFITS OF BEAVER
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DEMONSTRATING AND SHARING SUCCESSFUL CO-EXISTENCE EFFORTS
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CREATING AND SHARING RESULTS FROM BEAVER
RESTORATION DEMO SITESWITH STRATEGIC AUDIENCES

Welcome to
Doty Ravine
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Volume I: RECOVERY PLAN
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November |9, 2021

Wade Crowfoot, Secretary

Amanda Hansen, Deputy Secretary for Climate Change
California Natural Resources Agency

715 P Street, 20th Fioor

Sacramento, CA 95814

Submitted via emad CaollfornaNatureddresources o1 go

RE: Comments on Draft Climate Smart Strategy - Support inclusion of beaver and
process-based restoration in the California Natural and Working Lands Climate Smart

Strategy
Dear Secretary Crowfoot and Deputy Secretary Hansen,

We are long-time proponents and practitioners of nature-based solutions on natural and working lands.
While the draft Climate Smart Strategy identifies many excellent solutions, we strongly advocate for the
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PERSISTENCE
PAYS OFF -
CHANGE IS
POSSIBLE!
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Translocation to the Tule River Reservation

Third translocation site to be selected
anagement and Restoration Plan Development
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TO CREATE BEAVER
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OURWORK HAS JUST BEGUN!
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THANKYOU!

kate@oaec.org



The Process Paradox:
Overcoming challenges for
process-based restoration Iin
the reqgulated rivers of
California's Central Valley

Rocko A. Brown, PhD, PE
Cramer Fish Sciences
River Science and Restoration Lab

PF*"2ACRAMER
Yy .dBFISH SCIENCES
e

An Employee Owned Conswdring Company




Yuba River

PBR in highly degraded and regulated
rivers without dam removal?




Process-based restoration (PBR) principles

Target the root
causes of habitat and
ecosystem change

Taillor actions to
potential

Match the scale of
the solution to the
scale of the problem

Be explicit about
expected outcomes

Beechie, T.J., Sear, D.A., Olden, J.D., Pess, G.R., Buffington, J.M., Moir, H., Roni, P. and Pollock, M.M., 2010. Process-based principles for restoring river

ecosystems. BioScience, 60(3), pp.209-222.




What processes, what
scales, and how much?



Form-Process paradox — it’s complicated

Curvature Expansions

AR T e

Certain forms are always associated with certain processes — like river bars

Crosato, A. and Mosselman, E., 2020. An integrated review of river bars for engineering, management and transdisciplinary research. Water, 12(2), p.596.



Riffles can form and persist
due to multiple mechanisms

But many processes can create the Meandering can develop in

straight channels with enough

same form — equifinality sediment



.Otah State Pt ~ lllinois Deparmen
. ‘NaturallResgurces -%l;'
' By o T A

Similar form and process but the distinction is that one evolves



“Lest we forget!”

Ingredients for healthy rivers

1-A FLOW REGIME THAT 2-A SUPPLY OF SEDIMENT FOR 3-SPACE TO ALLOW FOR
MATCHES THE PHYSIOGRAPHIC FLOW TO DISSIPATE ENERGY LATERAL PROCESSES
SETTING

1-Poff et al. 1997. The natural flow regime; Trush et al. 2000. Attributes of an alluvial river and their relation to water policy and management.
2-Wohl et al. 2015. The natural sediment regime in rivers...
3-Biron et al. 2014. Freedom space for rivers: a sustainable management approach to enhance river resilience. Trush et al. 2000
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Impediments to PBR/ valley resetting
In regulated CV Rivers

Public safety Remnant habitats
and refugia Navigation

Flood/water
conveyance Waiting...



An

engineered
attempt?

Harrison, L.R., Bray, E., Overstreet, B., Legleiter, C.J., Brown, R.A.,
Merz, J.E., Bond, R.M., Nicol, C.L. and Dunne, T., 2019. Physical
controls on salmon redd site selection in restored reaches of a
regulated, gravel-bed river. Water Resources Research, 55(11),
pp.8942-8966.
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Dredger tailings
provide

Establish
_~ Floodplain
+ .. Vegetation

opportunity for
partial resetting

Augment Existing Channel '
with Spawning Gravels and
Rescale Geometry

Proposed Conditions

P 2AcrRAMER .
F .4BFISH SCIENCES
-i.. Ar Empfaves Quwned Congairing Campaont




Pre-project process domain‘ ~100 ft
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Post-project process do‘ain"_'SOO ft
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FORM &ND PROCESS

3 yrs Post project 5 yrs Post project (50 yr flood)

By incorporating flow reversals and surcharging LOCAL sediment supply,
habitat improved following floods

Brown, R.A., Sellheim, K., Anderson, J.T. and Merz, J.E., 2022. Chinook Salmon habitat evolution following river restoration, drought, and flood. Journal of Ecohydraulics, pp.1-23.
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Downstream changes in sediment supply

Confined Partly confined valley setting Laterally unconfined
valley setting / \ valley setting

Bedrock-controlied +  Planform-controlied
discontinuous floodplain : discontinuous floodplain

L |

Brierley, G., and K. Fryirs 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Victoria, Australia.



https://www.wiley.com/en-au/Geomorphology+and+River+Management%3A+Applications+of+the+River+Styles+Framework-p-9781405115162

Deposition (m) Erosion (m)
L _Jo-05 M <=-2.0
[ 0.5-1.0 MM -2.0--1.0

0 100 200r i 1.0-2.0 [0
I 0 ) B 20 | -05-0.0

Bank erosion and point bar creation yielded ~20 acres of shallow water
habitat naturally
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Cross section

planform

22
s
|
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A false dichotomy... PROCESS VS FORM

Reach corridor form can set the processes

Single channel, bars Multi-thread channel
Single channel, no

Width/Depth <10 Width/Depth 10-50 Width/Depth >50



Don’t give up — PBR Is possible

5 Target the root
causes of habitat and
ecosystem change

Not entirely possible, but can mitigate with maintenance (scaled flow
regime, sediment and wood augmentation)

"= Tailor actions to
~ potential

Match the scale of the
“w solution to the scale
% of the problem

| Be explicit about
= expected outcomes

Work with process domain with an eye toward the future and what
we want

Monitoring of biological utilization and population response ;

Make and test guantifiable geomorphic predictions




To get there:

CLEAR, MEASURABLE
GOALS

FORESIGHT/VISION

SOCIAL ENGAGEMENT
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brown@fishsciences.net

Rocko
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Evaluating and Forecasting
Restoration Benefits for Trout and
Salmon with Spatially Explicit
Modeling

Bret Harvey
USDA Forest Service, PSW Arcata



Example “fishy” goals for
restorationists

* Increased:
— “habitat complexity”
— Spawning gravel availability
— off-channel habitat
— “habitat suitability” for juvenile fish

* True goal: sustain populations






Individual-based, behavior-based,
process-based,
spatially explicit modeling:
an approach to address sustainabillity

« Simulate individuals that behave reasonably in
seeking to survive and reproduce

 Simulate environmental scenarios of interest

« Examine population dynamics that emerge from
the success and failure of individuals under
those scenarios



Included in the modeling
approach

Bioenergetics
Competition
Predation risk

Adaptive habitat and activity selection by individuals on each
model time-step

Dally variation in streamflow, water temperature and turbidity

All major effects of physical drivers, e.g. temperature: 1)
mortality; 2) energetics; 3) egg development; 4) timing of
spawning



Excluded from the modeling
approach

Categorical measurement or assessment of
“Habitat suitability” or "Habitat availability”

Imposed life-stage-specific demographic
rates

Imposed frequencies of movement



Required for application of the
modeling approach

Hydraulic modeling to estimate habitat-cell-
specific depth and velocity from streamflow

Streamflow, temperature, turbidity regimes

Estimation of habitat-cell parameters:
— distance to cover

— # of concealment spaces

— velocity shelter

— spawning gravel

Fish data for model calibration



Main reason to give
the approach credibility:

* Its broad capabillity to reproduce patterns observed in real
salmonids

— Habitat selection
— Diel behavior / activity selection
— P I Sk Sk St

opulation ey g
— Community




Example application:
Whychus Creek, Oregon

@)

_ Deschutes Basin

Whychus
Creek
watershed

OREGON













Habitat Cell Delineation |

Flow direction




Habitat Cell Delineation Il

Velocity

shelter
(proportion of Distance to Concealment

cover (m) spaces (count)




Typical pre- versus post-
restoration comparison:

* same time period

» same starting fish populations

* same streamflow, temperature
and turbidity regimes




Resident Trout

Young-of-year
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Rainbow Trout
Pre-restoration model reach
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Model v Field sampling comparison:
guantity

Response of Age 1+ Trout
to Restoration
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Conclusions from the example

* Modeling indicated big benefits of
restoration for trout

* Spawning success probably doesn't
strongly influence the productivity of the
reach

» “Shoulder season” stream temperatures
and flows deserve attention in forecasting
populations



General conclusions:

* Yes We Can usefully forecast restoration effects for
salmonids, while including real-world complexities

* Yes We Can incorporate new information likely to be
Important to fish, as it arises (e.g. restoration effects on
thermal heterogeneity and food availabllity)



Modeling note:

No flying fish!



Habitat Cell Delineation Il

Spawning Calculated in
gravel ArcMap from field-
proportion surveyed spawning

of area) beds



Model v Field sampling comparison:
identity
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Pre-restoration model reach

1 Dally abundance
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% Short-term hydrologic responses
1o ecologlcal meadow restoration g
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Emma Sevner1

Margaret Lang?, David Dralle? Karen Pope?, Joe Wagenbrenner?, Adam
Cummings? Kate Wilcox?, Jordin Jacobs?, Kevin Swift3
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What are riparian meadows and why are
they important?

* Improve water yield?

« Support water quality through flood
dispersion & attenuation?

» Foster groundwater dependent
ecosystems?

« Sequester carbon and create fire
breaks3

1. Viers etal. 2013
2. Loheide and Booth 2011

Ecologically functioning meadows promote groundwater
3. Reed et al. 2021 gically 9 P g

recharge!



History of Degradation

 Most Sierra Nevada meadows
are degraded (>60%)

 Impacts include livestock
overgrazing, railroad grades,
diversion and ditching

« Channel Incision — erosion of
sediment exceeds deposition

Meadow degradation initiates channel incision



Process-Based Restoration (PBR

PBR is a design philosophy which harvests the fluvial and
blologlc energy of the system to Increase restoration efﬁmency

Beaver Dam Analog at
. Middle Creek Meadow.
4 Photo Credit: Patrick Jarrett




PBR Tools: Beaver Dam Analogs (BDAS)

BDASs found to:

« Attenuate flood peaks
and slow water
velocities?

* Improve health and
guality in meadow
vegetation?

* Raise groundwater
tables?

* No significant
iInfluence on
groundwater tables?

o 0 .
) - . DL AP
444 AV » .

installed wood restoration structure

natural woody debris

1. Pollock et al. 2014

2. Nash et al. 2018 _
3. Scamardo and Wohl, 2020 Image Source: Shahverdian et al. 2019



How does process-based meadow restoration
affect hydrological processes?




How does process-based meadow restoration
affect hydrological processes?




How does process-based meadow restoration
affect hydrological processes?

Stream Discharge



How does process-based meadow restoration
affect hydrological processes?

Stream Discharge

Surface Water Hydraulics \S Ay



How does process-based meadow restoration
affect hydrological processes?

Sediment Capture

Stream Discharge

Surface Water Hydraulics \5_ A\



Middle Creek Meadow: Study Meadow

Fire History

Composite Burn Index or cbhi4 for Middle
Creek Meadow and Watershed burned in A.
Walker Fire (2019) and B. Dixie Fire (2021)

A

\\ 7;;_ !

Meadow Area:
6.4 ha CAF T
Slope: 2.1% \“
Drainage Area: )
958.30 ha 1 5
Elevation: 1426 m &
Annual Precip: , '
594 mm :

Q 50 100m i

|

Restoration Treatment

™ MID-PBR-11

MID-PBR-9

Restoration structures including BDAs at
Middle Creek Meadow, built August, 30 —
September, 4 2022




2 stream gages

5 transects

15 groundwater wells
2 distinct geomorphic

reaches
35 restoration
structures

’ Stream Gage

A Restoration Structure

I Groundwater Well

Wells

Elevation (m)

; eiﬁl
—
14‘3[3 | U

1425

1420

1415

1414

1405

R25

ROS

Ria L1D

\h\/]’/tg::
RSS

L
LOS

L28

M»fv('/-”
R15L10

R1D L15 L3D

2

0

90

S0 -25

0

25

50

Distance from main stream (m)

5 2%

i £

A. Meadow boundary with restoration structu

res. B. Reach 1. C. Reach 2. D.

Groundwater wells E. Restoration Structures Credit: Adam Cummings




Groundwater & Surface Water

Middle Creek Meadow Upstream Gaging Station

Groundwater

15 wells instrumented with
pressure transducer

« Manual measurements
made with E-line

Surface Water

 Discharge collected in 2021
using flowtracker acoustic
doppler velocimeter and fit
to rating curve



Groundwater table increases following restoration

— MID10-L10 MID30-R25 — MID50-L28 -=-=- MID70-R10 MID90-L32
MID10-R13 —— MID30-R55 MID50-R15 MID90-L05 MID90-RO5
— MID30-L03 MID50-L10 —-==- MID70-L15
a)
0 -
€
o 50 -
EJ u
+ 100 - :
g n
S 150 - .
- .
Ja m
o 200 -+ :
0 .
250 | ] | | | | | | II | | | | | | | | I ] | | | | | | I ] | | ] | I ] 1 I. ] I
May Jun Jul Aug Sep Oct
2022

Groundwater before, during (red shading), and after restoration. Groundwater wells in (a) are plotted with dashed
lines for Reach 1 and solid lines for Reach 2. Credit: David Dralle



Groundwater table increases following restoration

— MID10-L10 MID30-R25 — MID50-L28 -==- MID70-R10 MID90-L32
MID10-R13 —— MID30-R55 MID50-R15 MIDS0-L0O5 MID90-R05
— MID30-L03 MID50-L10 —==- MID70-L15
a) 12 mm Rainfall
0 - .
5 s50-
)
+= 100 -
2
9 150 -
i -
3=
2 700 - :
= Restoration -
250 +———"—"-F—"———F—F"———— T —————
May Jun Jul Aug Sep Oct
2022

Groundwater before, during (red shading), and after restoration. Groundwater wells in (a) are plotted with dashed
lines for Reach 1 and solid lines for Reach 2. Credit: David Dralle



Short-term decrease in outlet discharge

12 mm

b) 1 Restoration i)
107 = .

0 : :

T 1072 :

£ sz

Q) - A

o - v

£ 1073 = L

U 3 L .

L 1 — Qinlet Restoration construction ! ff -

O 1 ——=- Qoutlet """ 12 mm rainfall event .
v

May Jun Jul Aug Sep Oct

2022

Streamflow (b) for the upper (Q;,.r) and lower (Q,,.) before, during (red shading), and after restoration.
Groundwater wells in (a) are plotted with dashed lines for Reach 1 and solid lines for Reach 2. Credit: David
Dralle



Linking Surface Water and Groundwater

How much water was stored in Middle Creek Meadow following restoration?

] . ? Qinlet

 Use simple power law model to estimate i
discharge if restoration hadn’t occurred 17.;
\\

|
Xa
.
ST
'
¢
\

(Qoutlet,unrestored) A

— f \ ;~.'.44‘r Ry
Qoutlet = Y Qinlet &
*g and f are model coefficients &

» Assume decreases in outlet discharge could Vg
explain groundwater increases following |
restoration

* Integrate the difference to estimate water
stored in Middle Creek Meadow o _s0_won

<
Qo utlet



Q (m3s~1)

Estimating Storage

10_1 - — Qinlet = - Qoutlet, unrestored = gornlet
1 Qnul.let, restored Vi = I(Quutlet,unrestnred - Qnutlet. restored) - dt = 3701 m>
102 ; ) ﬁ
T s -
_ i e
1072 I § N
] E '; 'q.nlr- '=~
10_4 T 1 T J 1 1 T | T 1
AN AT ) RSP LN RN R R W R 1
P97 0T 0T 97l T e el R 2R R

Estimated increase in meadow water storage due to restoration. Credit: David Dralle



Change in Depth to Groundwater Pre- and Post-Restoration

50
@ 2022-05-01 to 2022-08-15 (pre)

© 2023-05-01 to 2023-10-01 (post)

(®))]
o
1

~
o
1

O
o
;

e

o

o
]

Avg depth to groundwater (cm)
(@)
o

(-
o

0.01 0.02 0.03  0.04 0.05
Outlet discharge (m3s~1)

Average depth to groundwater across all meadow wells before (blue) and after restoration (orange) as a function of shared
outlet discharge (log scale). Credit: David Dralle



Changes in Surface Water Hydraulics

SRH-2D - Sedimentation and River Hydraulics 2
Dimension

Developed by United States Bureau of Reclamation (USBR

B - \




Changes in Surface Water Hydraulics

SRH-2D - Sedimentation and River Hydraulics 2
Dimension

Developed by United States Bureau of Reclamation (USBR




Changes in Surface Water Hydraulics

SRH-2D - Sedimentation and River Hydraulics 2
Dimension

Developed by United States Bureau of Reclamation (USBR




Changes in Surface Water Hydraulics

SRH-2D - Sedimentation and River Hydraulics 2
Dimension




Pre-Restoration Model Surface Using LiDAR

\ 7 v -

* LIDAR flown
September 26 to
October 4, 2021

* 50 cm resolution
Digital Elevation
Model (DEM)

« Merged with
topographic
survey data

A. GTAC Drone collecting LiDAR at Southern Sierra partner site Lower Grouse Meadow B. Middle Creek Meadow Hillshade



Simulate restoration structures for post-restoration condition

N
2

Elevation (m)

1420.0
1419.9
1419.8
1419.7
1419.6
1419.5
1419.4
14193
- 1419.2
- 14181
- 1418.0

« Model mesh modified with 35 structures added
iteratively to verify model performance

« Field measurements of restoration structures including
average length, width, and height used to modify mesh

MID-PBR-9 e ™™ MID-PBR-11 elevations




Hydrogeomorphic Regions within Middle Creek Meadow

Depth |
A
2m \)' \ Reach 1
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Hydrogeomorphic Regions within Middle Creek Meadow

Depth |
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{ \ « Average Width (cm): 50
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\\ ,l\ connection
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/ « Average Width (cm): 100
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Reach 1 is laterally connected

1424.0
E
o
2 1423.0
o
>
()
L

1422.0

0.0 5.0 10.0

" Distance (m)

15.0

Cross Section 30




Reach 2 Is deeply incised

1415.0

—
S
—
o=
o

1413.0

Elevation (m)

1412.0

0.0

5.0 10.0
Distance (m)

15.0

Transect 70




Velocity Predictions

Restoration Scenario - Pre-Restoration Scenario = Velocity Difference

Velocity
2 m/s

0.6 m3/s Flow

0m/s

™
u
i

W

"\ 2.08ha

Wetted Area:

-------

£

Wetted Area:

1.77 ha

fr: oui

0 50 100m

| ]
)
LT
T\
\
R

[ Meadow Boundary
=== Reaches

Velocity Difference (0.6cms)

F 0.5 m/s

i -0.5 m/s

Wetted Area
Increase of
17%



Velocity Predictions

Restoration Scenario - Pre-Restoration Scenario = Velocity Difference

» Wetted Area: , Wetted Area: ' Wetted Area

R

Velocity 1\ 2.08 ha 1.77 ha \ Increase of
2 m/s ¥ 1%

™ Velocity
TR ) PR Decrease: 0.8

pe m/s

% I , . [ Meadow Boundary
¥4 |5 - == Reaches

\,_.A‘. '\
Y : .\\'-. -“V 3
| - \ : 3 ;:J & '
) =1 iy | Velocity Difference (0.6cms) %
szt el ' 0.5 m/s
| '-: 'u. L2 ’
I.Il' i ‘_.'I .‘ll' |' IJ
_:: ] ‘."II | I',' .!
\ ‘J:l ! £ :‘
| |

0.6 m3/s Flow

Velocity
Increase: 0.8
m/s

0 50 100m

-‘ | ! | |
0m/s ) i-O-s m/s ¢ |



Velocity
2 m/s

0.6 m3/s Flow

Reach 1:
Pre-Restoration

— 0m/s




Velocity
2 m/s

0.6 m3/s Flow

Reach 1:
Post-Restoration

— 0m/s




0.54 m/s
average
velocity from
activation of
new channel

Velocity
2 m/s

0.6 m3/s Flow

Reach 1:
Post-Restoration

— 0m/s



0.54 m/s
average
velocity from
activation of
new channel

Velocity
2 m/s

Increased overbank & o
flooding and lateral —
floodplain connection

0.6 m3/s Flow

Reach 1:
Post Restoration

— 0m/s




Velocity
2 m/s

0.6 m3/s Flow

Reach 2:
Pre-Restoration

— 0m/s



Velocity
2 m/s

— 0m/s

0.6 m3/s Flow

Reach 2:
Post-Restoration



Velocity
2 m/s

Increased overbank
flooding and lateral
floodplain connection

0.6 m3/s Flow

Reach 2:
Post-Restoration

— 0m/s



Predicted Water Surface Elevation Cross Section 90

A Downstream Gage
& Upstream Gage
1 Meadaw Boundary
» Benchmarks
~ Cross Sections

P san

0 uch. 01
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- Laa

.......

4.0 6.0 8.0
Distance (m)

Surface Water Profiles
Restoration Case, Modified DEM (WSE)
Base Case, Modified DEM (WSE)

Cross Section 90 showing field survey data, DEM, and modified DEM. Predicted

water surface elevations for 0.6 m/s flowrate for base case and restoration
scenario using modified DEM as input topography



Predicted Water Surface Elevation Cross Section 90

A Downstream Gage

Lipstream Gage

1 Meadaw Boundary
» Benchmarks

~ Cross Sections

¥ svem
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0 uca o U7 Khmmins
EITED ST
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'*“\'\ ..... Modified DEM Base Case, Modified DEM (WSE)

Cross Section 90 showing field survey data, DEM, and modified DEM. Predicted
water surface elevations for 0.6 m/s flowrate for base case and restoration
scenario using modified DEM as input topography



Meadow Restoration Response

Different responses to treatment observed in different regions of
the meadow

 Reach 1 — primarily increase In lateral floodplain connection and
development of new flow paths

« Reach 2 — primarily increase in depth within the incised channel

- Degree of channel incision may have important controls
~ on function and performance of restoration structures




How does process-based meadow restoration
affect hydrological processes?

Stream Discharge

Surface Water Hydraulics \S Ay



How does process-based meadow restoration
affect hydrological processes?

Short-term Reduction

In Stream Discharge
Complex Surface Water

Hydraulics



Conclusmns

2

#«" Process-based restoration has the capacity to
» — Increase floodplain connectivity

— raise groundwater elevations

. — capture sediment

— Meadows are groundwater dependent ecosystems and

‘ are highly responsive to restoration treatment.

— Low gradient and broad floodplains may be the low-
hanging fruit!
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Questions? -
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beaver dam density and implications
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1.Background
Why do spatial scales matter when describing habitats?
2. Study Approach
Model Predictions vs. Observed beaver dam density
Habitat conditions at different scales
3. Next steps and other questions
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Lower Childs

meadow

Forested

Gurnsey meadow

Habitats are nested at
different scales.



Process-Based Restoration

Energy FE =kQ pgh
Sources

Ciotti et al. (2021) Bioscience




Patch scale

Looking for patterns at different
scales tell us different stories.




Inputs:

USGS National Hydrography Dataset
LANDFIRE 2011 (EVT and BPS)

USGS baseflow equations
USGS 2-year peak flow equations
10m DEM

Are these inputs accurate for our system?
Are these inputs at the appropriate scale?
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Number of Beaver Dams/400m

In our Lower Childs meadow and

In our Gurnsey meadow reach

Transect

54 Forested reach, the BRAT model over the BRAT model underpredicted
predicted the number of damsin 11 the number of dams in 7 out of
out of 15 cases. 8 cases.
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BRAT Dam Estimate
Rolling Dam Average



Rolling Average Number of Beaver Dams
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Do we see a relationship between patch scale
characteristics and beaver dam density?

Legend
M Velocity

B Depth
I Slope
" Valley Width
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ValleyWidth
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Rolling Average Number of Beaver Dams

Do we see a relationship between patch scale characteristics and beaver dam
density? Preliminary Data
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Lower Childs

meadow

Forested

Gurnsey meadow

Do we see a relationship between reach scale
characteristics and beaver dam density?
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Do we see a relationship between reach scale characteristics and beaver dam
density? Preliminary Data
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Influence of scale on predictability of
beaver dam density and implications
for habitat modeling

1.Background
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2. Study Approach
Model Predictions vs. Observed beaver dam densii¥
Habitat conditions at different scales
3. Next steps and other questions



Next steps — Include additional data from more meadows...
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Inputs:

USGS National Hydrography Dataset
LANDFIRE 2011 (EVT and BPS)

USGS baseflow equations
USGS 2-year peak flow equations
10m DEM

Are these inputs accurate for our system?
Do we need additional inputs?
Are these inputs at the appropriate scale?




Fine scale habitat selection and movement patterns.

Photo from Smithsonian Science article about nuisance beaver relocation in Washington
https://www.smithsonianmag.com/science-nature/taking-nuisance-beavers-out-suburbs-can-help-save-

salmon-180977491/ Photo from Rothmeyer et al. 2002




Proportion Habitat Type Used

What habitat characteristics are
beaver selecting for In
established home ranges?

Proportion Habitat Type Available



Decisions about restoration:
Beaver reintroductions or BDAS?
How do they impact systems differently?

Output:

Predicted range of dams per
km that a stream can support.




Communities around beaver dams and how they compare

to BDA facilitated communities.
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Focus on
surface
water







Diversity, Density, etc...

How do aquatic-terrestrial
macroinvertebrate subsidies
differ between naturally
created beaver dam habitats
and anthropogenically created
beaver-dam-analogue (BDA)
habitats?

Pond



Diversity, Density, etc...

How do small mammal
communities differ between
naturally created beaver dam
habitats and anthropogenically
created beaver-dam-analogue
(BDA) habitats?

Pond



Inputs:

USGS National Hydrography Dataset
LANDFIRE 2011 (EVT and BPS)

USGS baseflow equations
USGS 2-year peak flow equations
10m DEM

Are these inputs accurate for our system?
Do we need additional inputs?
Are these inputs at the appropriate scale?

Decisions about restoration:
Iy Beaver reintroductions or BDAS?
How do they impact systems differently?

Output:

Predicted range of dams per
km that a stream can support.




Questions?

Caroline Gengo
UC Davis
caristuccia@ucdavis.edu

Ml CENTER rorR WATERSHED SCIENCES
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Restoration Goals in the UKB

* Increase groundwater levels

* Reduce suspended
sediment

* Improve floodplain
connectivity

* Encourage beaver activity
* Increase habitat complexity

* Promote riparian
productivity




Miles Miles
Year
(new) (adptv man)
2018 0.5 -
""" 2019 - 0.2
2020 0.2 -
2021 0.9 -
2022 5.6 0.5
SecatRegry ‘ 2023 5.3 2.3
Total 12.5 3.0
PBR Projects Implemented by TU 77
=, Treated Reach in the Upper Klamath Basin: 2018 - present /
s TROUT

P Klamuth River Basin 0 5 a0 20 Wiles ‘
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LTPBR in the UKB — How?
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Klamath Basin Integrated Fisheries
Restoration and Monitoring Plan (IFRMP)
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LTPBR in the UKB — How?
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Leonard and Brownsworth /4
Creeks

* Primary Goals:
* Sediment capture

* Post-fire riparian vegetation
recovery

Phase 1 (2022) — 48 structures,
1.2 miles of stream

e Phase 2 (2023) — 140 structures,
1.6 miles of stream

* Monitoring activities:
e Turbidity stations
* Multispectral drone flights
* Temperature
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Sun Creek

* Primary Goals:
e Reduce Incision
* |Increase groundwater levels
* Provide habitat complexity

e Phase 1(2022) — 52 structures,
1.3 miles of stream

 Phase 2 (2023) — 15 structures,
0.25 miles of stream

* Monitoring activities:
Turbidity stations
Multispectral drone flights

Shallow groundwater monitoring
wells

Fish populations
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NF Sprague River

* Primary Goals:
* Sediment capture
* Provide habitat complexity

Phase 1 (2021) — 107 structures,
0.9 miles of stream

Phase 1.5(2022) - 12
structures, 0.9 miles of stream

Phase 2 (2023) — 62 structures,
0.9 miles of stream

* Monitoring activities:
* Multispectral drone flights
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November 21 — 52 cfs

April 22 — 140 cfs










Monitoring Parameters and Resources

* Parameters
e Turbidity
e Groundwater
 NDVI
* Temperature
* Fish populations
* Floodplain connection
* Instream habitat
e Channel morphology

e Resources

e Sierra Meadows Wetland & Riparian Area
Monitoring Plan

* Low-Tech Process Based Restoration Project
Implementation and Monitoring Protocol




Turbidity Monitoring — Sun Creek

* Monitoring stations upstream and downstream of LTPBR activities show a
dramatic decrease in turbidity post-LTPBR

30 I
Pre-LTPBR 1 Post-LTPBR Downstream
1

I = Upstream

201

Turbidity (NTU)

] ,
SNEMI Y

Aug Sep Oct Nov Dec Jan




Turbidity Monitoring — Leonard Creek

Rain event 09/20/2022 Snowmelt 2023
200 =
150 4 53 3001
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Groundwater Monitoring — Sun Creek

e >1 ft. increase

i mMmMm ed | ate |y afte r Post-Restoration

. . Ground surface

installation of a BDA FAR: o TN N PO PN R S SN S S—
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|
o
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1
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Fish Monitoring — Sun Creek

* One-year post implementation, Bull Trout population in the project has
continued to increase.

LTPBR implementation

Bull Trout

2017 2018 2019 2020 2021 2022 2023




Vegetation Monitoring — Sun Creek

Change in NDVI at the Sun

o e B ES o Creek LTPBR project
* Normalized \_}g iy Sy
2 » -..\\-_ < e
y Mt e O ' "
i " : ': i’ » (3

Difference &
Vegetation Index:

* Quantitative
estimate of plant
greenness

40% increase in NDVI
above background
conditions

[ Active Channel Post-LTPBR
Decrease in NDVI
B Increase in NDVI

77 N

I&g#g,; A 0 50 100 200 Meters

.........
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Floodplain Monitoring — Sun Creek

Increase in Floodplain Area at Sun Creek post-LTPBR

- _ . Project Area
[ Active Floodplain Post-LTPBR 8.3 acres
[ Active Floodplain Pre-LTPBR 0.2 acres

N

0 100 200 400 Meters TROUT
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Channel Monitoring — Leonard Creek

- New channels post-LTPBR 1.18 miles
=~ QOriginal stream channel pre-LTPBR  0.47 miles

1

NI

N

TROUT
375 75 1§0 Meters UNLIMITED
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Geomorphic
Unit Monitoring
— NF Sprague

* 56% Increase in
pools per mile

e 212% Increase in
bars per mile

e 2021 -1LWD
Jam

e 2023 -49 WD
Jams






Lessons Learned

This work is impactful!

e Human Elements:
e Site visits before and after

* Geomorphic Elements:
* Fire and importance of
sediment
* Ecological Elements:

e Natural recruitment of
vegetation




Challenges

e Human Elements:
* Permitting

 Geomorphic Elements:
 Structure and channel stability

* Ecological Elements:
* Meadows and wood

* Working Landscape Elements:
e Cattle
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10 Years of
Experience Working
with Beaver for
Restoration in a
Human Dominated
Landscape
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Betsy Stapleton (Presenter) and Co-Authors Charnna Gilmore and Erich Yokel, Scott River Watershed Council



The Story of
French Creek

and the Entire Scott Watershed

Water, Beaver, Fish,
Restoration, Agriculture, and
Place Based Stewardship




Middle French Creek - Spawning Ground Surveys - Coho Salmon Redds - 2017, 2020 and 2023

Cliff Note Summary

W8l \Mid French Creek
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Scott River Daily Average Discharge
August Through December
2022 vs 2023
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Water, Again (and Again

French TNC
Date Staff Height (ft) Q (cfs)
7/31/23 2.03 5.84
8/2/23 2.6
8/8/23 2.04
8/21/23 1.99
8/28/23 1.7
9/6/23 1.9
9/18/23 1.94
10/4/23 2.4 5.01
11/8/23 2.27 13:35
12/6/23 2.5 34.71

12/16/23 2.32 17.8




Beaver and Juvenile Coho

Mrd French Creek Direct Observatron Survey -7/28 7/29 & 8/2/2023

M .:(‘f»:

Beaver Dam

| =200 Juvenile Caho Salmon
in Beaver Dam Pond

] Beaver Dam
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BDAs: Human Ecosystem Issues (Permitting



Form Based Restoration: Beavers, Site Evolution and
Stewardship

Even with Engineering, Oops Happen
Sediment
Food Sources:

 Beavers Alders, Cottonwood, and Willows




Water Surface Elevation- WY2020 and WY2021
Elev. (f French Creek - FRGP Side Channel More About Beavers and Form Based
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* Don’t Forget Upslope
Issues
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2023 - 2024 Coho Spawning Ground Surveys
Mid French Creek (RKM 2.8 - 4.3)

Legend
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