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Fisheries Biology

m Nate Mantua, PhD, NOAA, Southwest Fisheries Science Center

Although many factors may be responsible for the declines in anadromous salmonid
populations, this circumstance is commonly linked to the oceanic and estuarine conditions
present during the smolt life cycle phase, which remains unstudied compared to riverine
life phases. Upon saltwater entry, salmonids display a wide range of growth and survival
rates and display a variety of movement and migratory behaviors, both tied to ocean

and estuary productivity which influences the foraging conditions these individuals
encounter across space and time.

These sessions will feature innovative and novel studies focused on understanding the
ocean and estuary life cycle phase of Pacific salmonids, including: (1). An Overview of
Seascape Ecology and Current Events; (2). Movement and Migration; (3). Survival and
Growth; and (4). Foraging Conditions influenced by the California Current.
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Ecosystem Variability in the California Current

Spatial and temporal ecosystem responses integrate physical and
biological processes occurring at local, regional, and basin scales
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Sardine feeling the heat
from both climate change

and pesky shark...

2 s '17;:. i ,
Can we build models to predict this




Coupled Ecosystem Model using ROMS Framework

Regional Ocean Modeling System (ROMS)
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Multi-species Individual-Based Model (IBM)

Why Individual-based Models?

» Basic unit in nature; allows for complex behavior and life
history (full life cycle, growth, mortality, etc.)

Bioenergetics
> Wisconsin Model CMAX,PDU"VU
Balance between energy input and C = K,
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Multi-species Individual-Based Model (IBM)

Why Individual-based Models?

» Basic unit in nature; allows for complex life history (full life
cycle, growth, mortality, etc.) and behavior.

Behavior
Random Walk Kinesis Neighborhood
(whatever...) (happiness based) Search (fitness)

T~~~ | IllEnns
RANDOM

dumb fish smart fish



latitude

Climate to Fish: Global to Regional Downscaling

Step 1: Downscaling of global reanalysis or
earth system model to regional ROMS model
for the California Current (1° — 1/10° resolution)

Step 2: Offline biogeochemical (NPZ) solution
forced by downscaled physical solution

Step 3: Offline fish IBM forced by downscaled
physical and biogeochemical solutions
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Model Evaluation is Difficult !!!

» How does uncertainty propagate from physics to
biogeochemistry and higher trophic levels?

> |s behavior parameterized for present conditions
applicable under future conditions?

» Scarcity of direct observations beyond physics
and biogeochemistry

» Must evaluate each model component individually
and in relation to the other components

» Must rely on historical simulations



What Have We Learned?

Regional Historical Simulations (1990-2010)
» Drivers of seasonal krill aggregations

» Juvenile salmon growth patterns



Model Evaluation: Krill Abundance and Distribution
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Krill Aggregations and Ecosystem Hotspots

Timing and location of krill “hotspots”
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Juvenile Chinook Growth During First Year at Sea

Simulated Growth for April Ocean Entry
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Phytoplankton Temperature

Zooplankton

Juvenile Chinook Growth and Local Upwelling Intensity

Environmental Conditions
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What Have We Learned?

Regional Climate Projections (2000-2100)
» Changes in juvenile salmon growth potential

» Shifts in sardine distribution and abundance



SST Anomaly (°C)

Regional Projections: Climate to Fish

» Coupled Model Intercomparison Project (CMIPS) Ensemble
Selected members: GFDL (1°x1°), HAD (2°x2°), IPSL (1°x1°)
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Temperature

Krill

IPSL Projections: Temperature and Krill

Present (2000-2020)
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IPSL Projections: Juvenile Chinook Growth

Present (2000-2020)
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Ensemble Projections: Juvenile Chinook Growth

Present (2000-2020) Future (2080-2100) Future - Present

0.24 39.0°N 4 0.06

22 22 0.05

0.2 0.2 004

0.18 0.18 0.03

0.16 0.16 0.02

.14 0.14 0.01

012 012 0.00

0.1 0.1 0.01

08 08 0.02

0.03

0.04

0.05

2 - 06
125.0°W  124.0°Ww  123.0°W  122.0°w  121.0°W 125.0%W  124.0°w  1230°W  122.0°w  121.0°W 125.0°W 1240w 1230°W  122.0°w  121.0°W

Multi-Model Mean Multi-Model Spread

J39.0°N 39,0°N — 0.07
N 0.065
38.5°N 38.5°N
0.06
0.055
38.0°N 38.0°N —
- 0.05
37.5°N 37.5°N L | 0.045
N 0.04
37.0°N 37.0°N — *
.‘ 0.035
0.03
36.5%N 36.5°N —
- 0.025
36.0°N 36.0°N T 0.02
125 oW 124 (°W 123 Now 122 W 121 N*wW 125 N 124 0w 123 Do 122 W 121 "W

Projections are most robust (smallest spread) in coastal waters



Ensemble Projections: Sardine Population
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Percent Occurrence in Chick Diet
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Adding explicit
predation to IBM:

Stay tuned for Kelly
Vasbinder’s talk!




s it easy? No.
Is it fun? Yes!
s, IDoabIe? To some extent...

Disclaimer: .
any resemblance with real species and -~
events might be purely coincidental




Can we use an ocean productivity
model to estimate juvenile salmon
early ocean survival

Mark Henderson

USGS California Cooperative Research Unit

m California v
7 Y - Cooperative ;‘4
R 1 Fish & Wildlife ‘

X" ] Research Unit science for a changing world




Collaborators

* Jerome Fiechter (UC Santa Cruz)
* Brian Wells (NOAA-SWEFSC)
e David Huff (NOAA-NWEFESC)
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Early Ocean Survival

* A ‘critical’ period
* Year class strength is determined in the first ocean year

* Immediately after smolts enter the ocean (predation)
e During the first winter (starvation)

Predator Prey

~

High Low
match match

Abundance

Cushing 1969 Time



Salmon ocean life history - a ‘black box’

 Difficult time period to study
* Ocean is a big place
* Multiple complex processes interacting
* QOcean physics
e Climate drivers
* Fish movements
* Food web dynamics




Early ocean growth

* Conditions favorable for early
ocean growth
e Early season upwelling

* Increased zooplankton
concentrations in Gulf of the
Farallons

Fiechter et al 2015
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Ocean growth Potential and
Juvenile salmon survival

Poor year Good year

* Main Question: Do growth
conditions during ocean entry
affect juvenile salmon survival?

 What ocean conditions produce the
strongest cohorts?

https://caltrout.org/steelhead-salmon/central-valley-floodplains-a-critical-and-missing-link-to-salmon-recovery



Approach Overview

* Use multiple data sources and models

Ocean circulation - ROMS
Biogeochemical model

Tagging data

* Coded wire tags
Salmon bioenergetics model

391

381

371

361

% Observed

R krill
P\

Modeled

Y zooplankton

-124

-123 -122




Bioenergetics model

e DEBkiss model

e Growth = difference between
assimilated biomass and
maintenance metabolism

[ structura ]

[ buffer ]—-"

Jager, Martin, & Zimmer 2013



Non-metric Multidimensional Scaling (NMDS)

* Ordination
* Goal: Group the most similar years together
e Similarity based on spatial pattern in growth potential

e Sample unit: Spatial cells (n=167)

Cell 167
1988 0.01 003 0001 ..  0.004
1989 0.01 0.025 0.002 ..  0.007
1990 0.005  0.008 0.1 . 0025 —m
1991 0.005  0.008 0.2 0.04 1990 °

O

1991
[2010 0.04 0.035 0.02 .. 0.025 ]




Oceanographic indices

* Upwelling index

* Oceanic Nifo Index

* Pacific Decadal Oscillation

* Northern Oscillation Index

* North Pacific Gyre Oscillation

e Sea level
* ROMS currents




Survival Estimates

* Coded wire tags

* Hatchery releases

* Tag recoveries from :
1. Juveniles (NOAA salmon surveys) n=766
2. Adults (Fishery/Escapement)

e Survival

* Cohort reconstruction oD DD DY

N

Coleman

Feather
Nimbus

Mokelumne
Merced




GLM

* Beta Regression
 Survival is a proportional response

* Response: Cohort Reconstruction Survival

* Predictors:
* NMDS axes
* Annual growth potential
* All two-way interactions



Growth Potential Results

* Highest growth potential
e Gulf of Farallons
* Monterey Bay

* Lowest growth potential
* Coastal waters North of Point Reyes

Henderson et al. 2019 Fisheries Oceanography
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Ordination results

* Three axes accounted for the variability
among spatial cells

* Axis 1
e Growth variability within GoF & shelf break

* AXIS 2
* Growth variability just N. of Point Reyes

e Axis 3

e Growth variability in most Southern region

Henderson et al. 2019 Fisheries Oceanography
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Relating Ordination axes to
Oceanography

e Axis 1

* Correlated with Upwelling index

* AXIS 2
* Correlated with Alongshore flows

e Axis 3

e Correlated with Onshore flows

Henderson et al. 2019 Fisheries Oceanography
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Ocean growt

A

Juvenile salm

O

Potential and

N survival

* Main conclusion: We explained 82% of
the variation in juvenile salmon survival
using ocean growth potential

* These results should improve our ability to
predict adult returns

Henderson et al. 2019 Fisheries Oceanography
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Relating oceanography
to survival
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Relating oceanography
to survival

* Survival is highest when
upwelling/productivity in
GoF is high

* High growth potential
does not always mean
high survival
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Conclusions

* We can use an ocean productivity model to estimate early ocean
survival
e Caveat 1: thisis a correlative model

e Caveat 2: we haven’t tested our model with new data to see how much we’re
fooling ourselves

* There were three main patterns in growth variability along CA coast
* Upwelling, Onshore currents, Alongshore currents

* Early ocean survival is dependent on interactions between the
strength of these oceanographic conditions
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Questions




Survival Estimates

* Coded wire tags

e Hatchery releases

* Tag recoveries from :
1. Juveniles (NOAA salmon surveys) n=766
2. Adults (Fishery/Escapement)

e Survival
i COhOFt reconstruction
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Top-down and bottom-up effects on
juvenile Chinook salmon survival oft
central California from an individual-
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Lifecycle of Chinook Salmon
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Ecosystem Modeling Framework




Ecosystem Modeling Framework
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Ecosystem Modeling Framework

Hydrodynamic
Processes (ROMS)

Surface Temperature

1/10°
DOMAIN

Fiechter et al. 2018, 2020

ROMS: Regional Ocean Modelling

System (ROMS) in the California
Current for hydrodynamics

jg10n i 1/30° ROMS model is embedded within a
reanalysis of the broader California Current

System circulation at 1/10°

Nested approach allows for finer scale resolution
closer to shore, resolving features that influence
biogeochemical and lower trophic level processes



Ecosystem Modeling Framework o

NEMUCSC: North Pacific Ecosystem Model for 7
Understanding Regional Oceanography (NEMURO) Biﬁ)'chemic d
customized for the California Current (NEMUCSC) for Lower Trophic
biogeochemical interactions and generation of the prey vel Prociiys
(krill) field EMUQ?

Limiting macronutrients: Nitrate, -
ammonium, silicic acid Simulated Chlorophyll (mg/m3) Observed Chlorophyll (mg/m3)
Y T T I B [T T R T

Phytoplankton: nanoplankton, diatoms

Detritus pools: DON, PON, particulate

silica

Zooplankton: micro, meso, predatory
Predatory group is parameterized as
krill (Euphausia pacifica) Ml wenEM30
Favors diatom/copepod predation 28w W G2 gz 10w

Brinton 1962; n.d.; Lavaniegos and Ohman 2007; Fiechter et al. 2018,2020
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Ecosystem Modeling Framework

Implementation of the Salmon IBM

Salmon enter the model at 7.4g, and their growth is calculated in the IBM through a series

of metabolic equations that rely on the temperature and krill from the NEMUCSC and
ROMS models.

The juvenile salmon individual-based model (IBM) consists of a series of modules
representing:

* Bioenergetics for growth

* Swimming behavior Salmon growth and
* Mortality predation (IBM)

vf
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Model — Bottom-Up Drivers

A GOOD YEARS
V BAD YEARS
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* Good growth years are linked to stronger, early
season upwelling

* Good growth years correspond well to high end of
year krill anomalies, and bad growth years
correspond to low end of year krill anomalies.

Wells et al. 2017, Fiechter et al. 2015

Cumulative growth for date of entry = 121
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Model — Bottom-Up Drivers

Implementation of the Salmon IBM

Salmon enter the model at 7.4g, and their growth is
calculated in the IBM through a series of metabolic equations

that rely on the temperature and krill from the NEMUCSC
and ROMS models.

The juvenile salmon individual-based model (IBM) consists of
a series of modules representing

* Bioenergetics for growth
 Swimming behavior

* Predation mortality

Henderson et al. 2018. Fisheries Oceanography

When comparing coded wire tag survival and model
estimated survival, the relationship is stronger for low
survival years. When food is scarce it drives mortality
(bottom-up), but when it is plentiful, we need an extra
top-down driver to explain mortality.
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and ROMS models.
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a series of modules representing
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Model - Top-Down Drivers

Size-Based Mortality =
(interaction probability between

Cumulative growth for date of entry = 121

predation and prey) == Year
e = E 1997 [==| 2003
B X 200- = 1993 |m=| 1994
£ I I 4 o ] 1990 [m=| 1995
- (relationship between predator’s _ V) = roee o
2 prey distribution and prey size) < = 1001 2005
E Photo: National Park Service E
Size of
Murre
prey | 2010 [mem| 2009
: Bt oY R 200 Vear Day 300

Interaction equation in: J. Anderson, 2019 (in prep). Survival of prey growing through gape-limited and apex predators 15
Predation tuning value from: Friedman, W. R. et. al. 2019. Ecosphere.



Model - Top-Down Drivers
Predation Mortality = Size-Based Mortality x Sightings

Murre Sightings: Predation Distribution—Murre
Abundance Normalized by Maximum

16



Model - Top-Down Drivers
Predation Mortality = Size-Based Mortality x Sightings x Abundance

Murre Sightings: Predation Distribution—Murre
Abundance Normalized by Maximum

Weighting by Murre Abundance

Marma Iizg:l Ml.lrre A_bun dance
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Model - Top-Down Drivers
Predation Mortality = Size-Based Mortality x Sightings x Abundance x Diet

Murre Sightings: Predation Distribution—Murre i e Ce b Sl U
Abundance Normalized by Maximum
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Scenario 1: Environmentally driven mortality modulated by

predator distribution, but not abundance or diet

Predation Mortality = Size-Based Mortality x Sightings

Predation Mortallty by Year and Age Murre Sightings: Predation Distribution—Murre
Abundance Normalized by Maximum

Predation Mortality by Year

A

AN .y

1.0
08

Age post entry (days)

Predation Mortality

@

= w B = = = | | | | |
i - e 25 124 123 122 21
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Scenario 2: Environmentally driven mortality modulated

by predator distribution and abundance, but not diet
Predation Mortality = Size-Based Mortality x Sightings x Abundance

Predation Mortality by Year Predation Mortality by Year and Age

Weighting by Murre
Abundance

Predation Mortality

{
Age post entry (days)




Scenario 3: Environmentally driven mortality modulated
by predator distribution, abundance and diet

Predation Mortality = Size-Based Mortality x Sightings x Abundance x Diet

Predation Mortality by Year Predation Mortality by Year and Age Weighting by Salmon Percentage
of Murre Diet

=
=,

Percentage of Diet
Made up of Salmon
=

O N o> o D O &
X LEC O LN SN
TR AT A

Weighting by Murre Abundance

Predation Mortality
Age post entry (days)

1.2

Normalized Murre
Abundance
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What does this mean for survival?

Scenario 1: Environment and Predator Scenario 2: Environment, Predator Scenario 3: Environment, Predator
Distribution Distribution, and Abundance

Distribution, Abundance and Diet

0.075-

0.75

04-
0.050 -

survival

survival

02-
0.025-

0.0-
2010 1990 1995 2000 2005 2010

Environment only: Including Abundance:

e Variability between years driven e Signal from Murre abundance
by environment swamps environmental signals,

Timing of outmigration matters

1990 1995 2000 2005

Abundance and Diet:

Including diet mitigates some of the

drop in survival due to abundance
especially after 2000 Diet as a driver seems effective, but is
self-imposed...what if information on
diet could come from the IBM?

22
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What if the amount of salmon eaten by Murre
could be emergent?

We can do this by looking at
alternative forage, prey switching,
and co-occurrence of juvenile
salmon and anchovy

* Murre forage on YOY rockfish

* When rockfish are low,
Murre switch to foraging on
anchovies, bringing them

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Closer to Shore and
Year

Proportion of diet

b increasing consumption of
juvenile salmon due to
spatial overlap between
anchovy and juvenile salmon

Salmon in diet

&
o
R

0.0 02 04 06 08 1.0
Anchovy in diet

Salmon survival

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year

Figures from Wells et al. 2017 23



What if the amount of salmon eaten by Murre
could be emergent?

New approach: Drive diet with alternative forage instead of percentage of murre
diet made up of salmon

PC1(+) Anchovy In(CPUE) interpolation PC1 (+) Rockfish In(CPUE) interpolation

Weighting by Salmon Percentage of
Murre Diet
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PCA method in Santora et al. 2014



What if the amount of salmon eaten by Murre
could be emergent?

Murre Sightings: Predation Distribution—Murre

PC1(+) Anchovy In(CPUE) interpolation Abundance Normalized by Maximum

Weighting by Murre Abundance
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Photo: National Park Service
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Contact me at:
kvasbind@ucsc.edu
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Characterizing the marine

distributions of California’s
Chinook salmon

(using tags and genetics)
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Understanding Chinook salmon distributions
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Relevance to California’s salmon stocks

* Central Valley fall-run

Klamath River

& ETert
° : _ KC (CR) ‘*
Central Valley spring-run (Threatened) N\ -

e Sacramento River winter-run (Endangered) KC e\ 9
 California Coast (Threatened)

* Upper Klamath and Trinity Rivers
* Southern Oregon and Northern California Coast

Satterthwaite et
1 al. 2015
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Shelton et al. 2019
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Next steps

* Increase resolution of stock groupings

e E.g., NCA / SOR -> California Coast / Klamath / North California South Oregon
Coast

* Obtain inference on untagged portion of stocks

* How do we do this?
* Add new sources of data!



New Sources of Fishery Data:
Genetic Stock Identification (GSI)

* Using genetics to:
(\ * Assign assemblage to stock proportions,
\\, or individuals to stock probabilities,
w - using genetic markers
1:\\, e Seeb et al. 2007; Clemento et al. 2014
* Advantages:

* Assign every sampled fish to group
* Hatchery- and natural-origin both assigned

e Disadvantages:

* Imprecision in assignments
* Lose information on release year, age
e Assignments may be uncertain




New research objective

1. Integrate CWT and GSI information to
estimate Chinook salmon stock distribution KCem
and abundance in the ocean T S

* Start with a case study of CA and S. OR stocks G
e Central Valley fall — FB \\
 California Coast
e Klamath River | | e
* North California/South Oregon Coast SF (c0)

* Leverage CWT and GSI data to improve MO
understanding of low abundance stocks and
natural-origin stock components

Satterthwaite et
"1 al. 2015
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Research methods



Commercial troll

Overview of GSI| data I
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Data coverage: C\VV/ 1 vs GS|

CWT+GSI data coverage
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Overview of model structure

Existing CWT structure (tracks release groups) . o -
Shelton et al. 2019, 2021 Fish distribution

Known # of

released

# fish at # fish at # fish at
fish with A model age 1 ? model age 2 model age n

CWTs : I

I

Juvenile ;nortalit Fishery mortality + Constrained by CWT [
y Natural mortality + onstrained by recoveries
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- - -
New parallel GSI structure (tracks broodyear groups) Fish distribution "~

Unknown
total stock # fish at
model age 1

abundance
for each
broodyear

# fish at

? model age 2
|

|

# fish at
model age n

Fishery mortality +
Natural mortality +
Escapement

Constrained by GSI mixtures,
PFMC total landings, and
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zoid: A mixture model (and R package) for modeling

proportional data with Os and 1s in ecology

* We developed a new method for
analyzing complex proportional data

* Models are available as R projects
on GitHub and CRAN

 https://nwfsc-cb. github.io/zoid/

* https://cran.r-project.org/web/
packages/zoid/index.html

* In revision at Ecology
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Jensen et al. 2022,
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Research results

*Results to date are preliminary
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Data coverage: C\VV/ 1 vs GS|

CWT+GSI data coverage
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Data coverage:
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. .« (o . . . SFB = Central valley fall
Simplified CAC distribution CAC - California Coast

KLT = Klamath
Spatial Distribution NCASOR = North California/
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CWT Abundance

SFB = Central valley fall
CAC = California Coast

Release group abundances (LT - Kiamath

CWT groups

CWT Release Group Abundances over Time

NCASOR = North California/

South Oregon Coast
GSI groups
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Abundances of GSI groups
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Discussion + next steps



What have we learned?

* Novel estimates of ocean distribution for rare stocks
* Estimates correspond to naive expectations

* First use of combined CWT and GSI data to inform the life history of
Chinook salmon at spatial scales relevant to management

* GSI data expands breadth of inference but doesn’t necessarily
improve estimates of distribution for rare stocks
e Gain inference on hatchery- and natural-origin fish, plus overall abundance

* Available data can limit our scale of inference, regardless of GSI
* GSl data are less information rich than CWT recoveries



Future work

 Add model functionality for spring- and winter-run life histories
* Expand the number of modeled stocks

* Incorporate new data sources
* Expand GSI to include datasets from British Columbia and Alaska

* Obtain outmigrant estimates by stock, release year to better scale stock
abundances over time

* Expand modeling of life history parameters as a function of habitat



Questions?

Questions? =2 jensenal@uw.edu
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Ocean distribution of West Coast
Chinook salmon inferred from coded-
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Data sources on subadult Chinook salmon
ocean distribution

* Primarily fishery-dependent data

* Long history of coded-wire tag program
* Coast-wide coordination in sampling required by Pacific Salmon Treaty

» Largely but not exclusively deployed in hatchery setting

* Increasing use of genetic techniques
* GSI — genetic stock identification
* PBT — parent-based tagging

» Often pursued independently, different modeling/analysis paradigms



What have we learned and what are the next
steps?

* Coastwide patterns in tag recoveries for select stocks along the coast

* CPUE-based, seasonal patterns for California stocks
 Suitability of proxies, hatchery- versus natural-origin
* Challenges making inference for rare stocks

* State-space population models: area-specific abundance
* Applications to rare stocks and alternative run timings
* Future work- changes in distribution across years
* Drivers?
* Predictions for a future climate?



What have we learned and what are the next
steps?

* Coastwide patterns in tag recoveries for select stocks along the coast

 CPUE-based, seasonal patterns for California stocks
* Suitability of proxies, hatchery- versus natural-origin
* Challenges making inference for rare stocks

e State-space population models: area-specific abundance
* Applications to rare stocks and alternative run timings
* Changes in distribution across years
* Drivers?
* Predictions for a future climate?



McKenzie R. spr. (63)

Coleman NFH fall (75)

Distribution metric:

Proportion of all ocean fishery tag recoveries by area
Pools across seasons, ages; no accounting for effort

Percent of
recovenas

< 1% + e —2]
4
1-2% *
399 ¢ ® +
- "
10-20% M A it
> 30% @) ol .
L =
Hatchery '}ff' 2y ~*7
location +"' A
—~ % .
X
&/ *
; A #
+ ‘..
g ®

* Weitkamp 2010 Trans. Am. Fish. Soc. 139:147-170



McKenzie R. spr. (63)

Coleman NFH fall (75)

Distribution metric:

Proportion of all ocean fishery tag recoveries by area

| Pools across seasons, ages; no accounting for effort
Percent of g
recoveries :

<1% + = —
4
1-2% *® ) -
3.99 * +
] -
10-29% i

> 30% @

Hatchery "ﬁf’
location

Central Valley Fall Run
3 f : /
v A %

* Weitkamp 2010 Trans. Am. Fish. Soc. 139:147-170



154

Percent of
recoveries

<1% +
12% ®
39% ¢
10-29%
> 30% @

Hatchery Y
location

Crystal Lake spr. (3)

WEITKAMP

+ YakCst

. NSEAK
~ S
@ ssenx

A

A
\/\‘
*
QCharls T~
c .
*
~—
*
A

CBCCst

e Sl
NWVanls StrGeo

SWWanls
— —_— A~
WACst
PugSnd

+
ColumR ™ L ¥
Uiy o~
NORCst
S—— S~
CORCst
— —

—__ SORCst ik
NCACst

MendCst
X SFranB

— MonBS

Quinault fall (46) Cowlitz fall (50)
®  YakCst +

A NSEAK

*
~ T~ o

& SSFAK -

QCharls
- —l
—
*

CBCCst
~-
NWVanls
A StrGeo
SWvanls @ A *
B A e A
WACst % [ A N
~ A PugSnd

olum \Eﬁ
=" ColumR A

+ NORCst
CORCst -
g <
—_ SORCst i
NCACst
MendCst el
~ SFranB =X
" MontBS —

Eagle R. sum. (33)

Chehalis R. fall (27) Samish R. fall (36)

+ +
A N
+ +
+ *
'.j—_/f ’
- +
\___“ \___\
+ . - .
A A
— A
* A *
~ ~
~— ~——
+
< ~ ) -~
i !

McKenzie R. spr. (63) Coleman NFH fall (75)

* .
A
A N
A
~=L7d
A %ﬁr-»
-, _
‘-.\_\‘ -"‘——-___
* +
A‘U““ l.f\J\
B A .
: A
. * *
& X
) +
) A
+ A
¥ L]

FiGure 3.—Maps illustrating the percentages of recoveries by marine recovery area from the Yakutat coast to Monterey Bay
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What have we learned and what are the next
steps?

e Coastwide patterns in tag recoveries for select stocks along the coast

* CPUE-based, seasonal patterns for California stocks
 Suitability of proxies, hatchery- versus natural-origin
* Challenges making inference for rare stocks

e State-space population models: area-specific abundance
* Applications to rare stocks and alternative run timings
* Changes in distribution across years
* Drivers?
* Predictions for a future climate?
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What have we learned and what are the next
steps?

* Coastwide patterns in tag recoveries for select stocks along the coast

* CPUE-based, seasonal patterns for California stocks
* Suitability of proxies, hatchery- versus natural-origin
* Challenges making inference for rare stocks

e State-space population models: area-specific abundance
* Applications to rare stocks and alternative run timings
* Changes in distribution across years
* Drivers?
* Predictions for a future climate?
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Take-home on CA spring & winter run distributions

* Winter run fishery recoveries highly concentrated south of Point Arena

* Central Valley Fall versus Spring recoveries differ much less
e Spring possibly more spread out to the north later in the year

* Klamath-Trinity Spring do seem concentrated to the north relative to Fall
e Especially early in the year
e But distributions don’t seem radically different

* No obvious hatchery-wild differences within runs in their distributions
* But, sample sizes are often limited



What have we learned and what are the next
steps?

e Coastwide patterns in tag recoveries for select stocks along the coast

 CPUE-based, seasonal patterns for California stocks
* Suitability of proxies, hatchery- versus natural-origin
* Challenges making inference for rare stocks

* State-space population models: area-specific abundance
* Applications to rare stocks and alternative run timings
* Changes in distribution across years
* Drivers?
* Predictions for a future climate?



Bayesian state-space model

Coastwide integrated model for fall Chinook

* Spatial distribution of fish in ocean (by season and origin region)

Juvenile mortality (by release and year)
* River and early ocean mortality

Adult mortality (by release and year)
Maturation schedule (by age and origin region)

* Spatio-temporal variation in fishing (by season, area, year)
and vulnerability (by age, area, and gear type)

Simultaneously considering all major stocks of fall Chinook

* Shelton et al. 2019 CJFAS 76:95-108
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steps?

* Coastwide patterns in tag recoveries for select stocks along the coast
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Warm versus cool years, and future projections
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Distribution from CPUE and Sampling
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Combining information across years

Contacts per unit effort for particular stock, age, & month:

Fitting a long-term mean (fixed effects model)

Aoy =BY, T,
AN

annual cohort strength proportion found in
(ocean-wide) each management area

Satterthwaite et al. 2013 CJFAS 70:574-584
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