Drought Response: Science, Policies and Projects Needed to Protect Fisheries and Water Resources

A Concurrent Session at the 39th Annual Salmonid Restoration Conference held in Santa Cruz, California from April 19 – 22, 2022.

Session Coordinator:

- Matt Clifford, Trout Unlimited
- Monty Schmitt, The Nature Conservancy
- Redgie Collins, California Trout

The health of California's rivers and fisheries is suffering as a result of persistent severely dry years. These events are not one offs but rather a harbinger of our future with climate change. By failing to effectively leverage lessons learned from recent dry years, we continue to be caught unprepared, with management actions coming too late and on too limited a scale to protect streamflows for fish, wildlife, and drinking water supplies. To address this problem, we need a new approach. Plans need to be formulated in advance, so that when dry conditions develop we have implementable, science-based management measure ready to be put into action to protect streamflows.

We must act now to be ready for future dry years or we risk extinction of salmon populations and loss of reliable water supplies for people. This session will explore the policies, science, and water management practices that will enable us to protect the rivers that provide fish habitat and human water supplies in the face of a rapidly drying climate

Presentations

Slide 4- Drought Planning in the Western United States: A Review of Drought Plans in the Western States and Recommendations for California's Future Response, Dan Wilson, NOAA California Coastal Office

Slide 25- The Drought Flows Monitor: An Early Warning System for Freshwater Ecosystems, Julie Zimmerman, PhD, *The Nature Conservancy*

Slide 43- Lessons Learned from Recent Droughts, Erin Ragazzi, Division of Water Rights, State Water Resources Control Board

Slide 61- **An Ecological Drought Indicator Framework for California**, Ted Grantham, PhD, *UC Berkeley*; and Jeffrey Mount, PhD, *Public Policy Institute of California*

Slide 95- Watershed-scale Cooperative Solutions: Projects and Approaches to Increase Drought and Climate Resilience for Streamflow, Fish Habitat, and Water Supplies in Coastal Watersheds, Mia van Docto, *Trout Unlimited*, and Monty Schmitt, *The Nature Conservancy*

Slide 128- Drought Resiliency in the Klamath Basin: The Yurok Tribe's Strategies and Approach, Mike Belchik, Senior Fisheries Biologist, Yurok Tribe Fisheries Program, and Thomas Starkey-Owens, Water Program, Yurok Tribe Environmental Program

Drought Planning in the Western United States:

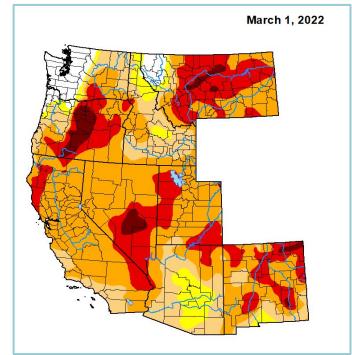
A Review of Drought Plans in the Western States and Recommendations for California's Future Response

Dan Wilson Dereka Chargualaf Rick Rogers

J.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

The U.S. Drought Monitor

			Ranges				
Category	Description	Possible Impacts	Palmer Drought Severity Index (PDSI)	CPC Soil Moisture Model (Percentiles)	USGS Weekly Streamflow (Percentiles)	Standardized Precipitation Index (SPI)	Objective Drought Indicator Blends (Percentiles)
D0	Abnormally Dry	 Going into drought: short-term dryness slowing planting, growth of crops or pastures Coming out of drought: some lingering water deficits pastures or crops not fully recovered 	-1.0 to -1.9	21 to 30	21 to 30	-0.5 to -0.7	21 to 30
D1	Moderate Drought	 Some damage to crops, pastures Streams, reservoirs, or wells low, some water shortages developing or imminent Voluntary water-use restrictions requested 	-2.0 to -2.9	11 to 20	11 to 20	-0.8 to -1.2	11 to 20
D2	Severe Drought	Crop or pasture losses likely Water shortages common Water restrictions imposed	-3.0 to -3.9	6 to 10	6 to 10	-1.3 to -1.5	6 to 10
D3	Extreme Drought	Major crop/pasture lossesWidespread water shortages or restrictions	-4.0 to -4.9	3 to 5	3 to 5	-1.6 to -1.9	3 to 5
D4	Exceptional Drought	Exceptional and widespread crop/pasture losses Shortages of water in reservoirs, streams, and wells creating water emergencies	-5.0 or less	0 to 2	0 to 2	-2.0 or less	0 to 2


Effects of Drought on Fish and Habitat

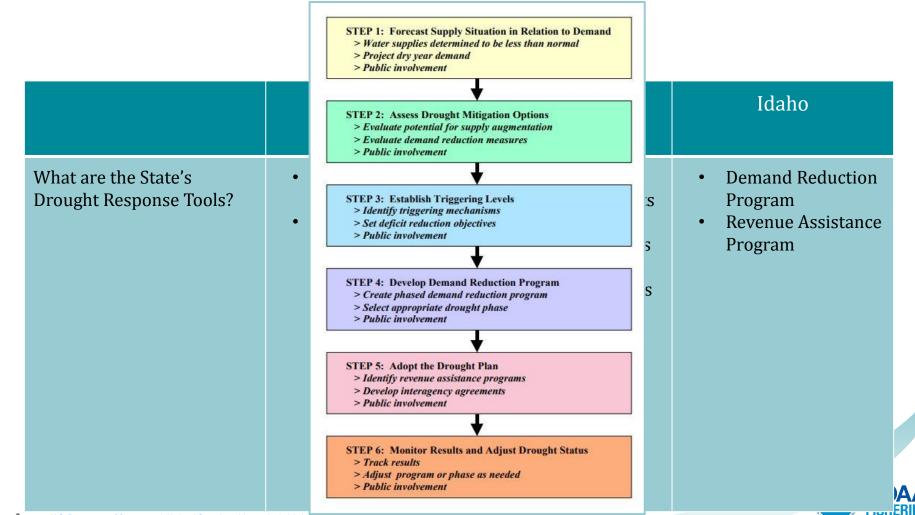
- Extreme and Severe drought reduces access to upstream spawning grounds and reduced spawning habitat area
- Extreme and Severe drought in the spring can reduce the ability for smolts to emigrate freshwater.
- Extreme and Severe drought conditions also have the potential to disconnect riffles from pools, leaving the pools isolated from one another.
 When pools become isolated, water temperature increases and dissolved oxygen content decreases, and the juveniles utilizing these pools as habitat refuges may not survive until adequate flows resume.

Percent of Species Range experiencing drought: US Drought Monitor (3-1-2022)							
	Normal	D0 Abnormally Dry	D1 Moderate Drought	D2 Severe Drought	D3 Extreme Drought	D4 Exceptional Drought	
CCC Coho Salmon	0.0%	0.0%	0.0%	67.6%	32.4%	0.0%	
SONCC Coho Salmon	0.0%	0.0%	11.1%	50.2%	38.7%	0.0%	
CC Chinook Salmon	0.0%	0.0%	0.8%	35.5%	63.6%	0.0%	
CCC steelhead	0.0%	0.0%	0.0%	92.1%	7.9%	0.0%	
SCC Steelhead	0.0%	0.0%	54.3%	45.7%	0.0%	0.0%	
SC Steelhead	0.0%	0.0%	80.1%	19.9%	0.0%	0.0%	
NC Steelhead	0.0%	0.0%	1.0%	28.7%	70.3%	0.0%	

Introduction: Drought Planning in the Western States

- Does the State have a formal committee dedicated to drought response?
- How does the State handle Fish and Wildlife during drought?
- What are the State's Drought Response Tools?

Source: The U.S. Drought Monitor


	Washington	Oregon	Idaho
Does the State have a committee dedicated to drought response?	Water Supply Availability Committee Executive Water Emergency Committee	Water Supply Availability Committee Drought Readiness Council	Water Supply Committee Subcommittees: Water Data Agricultural Fish, Wildlife, Recreation, and Environmental Municipal, Industrial, and Water Quality Economic Energy

	Washington	Oregon	Idaho
How does the State handle Fish and Wildlife during drought?	Washington Department of Fish and Wildlife Resiliency and Response Actions for Fish in Nature Resiliency and Response Actions for Fish in Hatcheries	Oregon Water Resources Department Oregon Department of Fish and Game	Idaho Department of Water Resources • Fish, Wildlife, Recreation, and Environmental Subcommittee

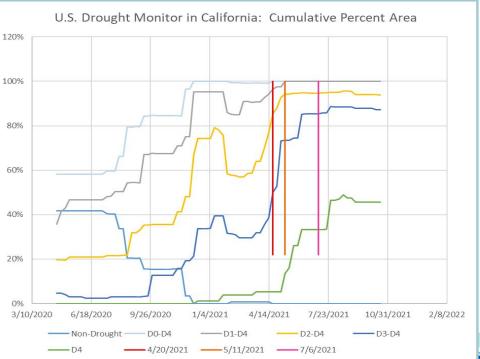
	Washington	Oregon	Idaho
What are the State's Drought Response Tools?	 Emergency water rights permitting Potential funding 	 Temporary Drought Permits Temporary Water Transfers Temporary Instream Leases Temporary Substitutions (e.g., switch to groundwater) Special Option Agreements Temporary Exchange of Water 	 Demand Reduction Program Revenue Assistance Program

Challenge #1: Normalizing Drought Response

California's water right system:

- California uses hybrid riparian and appropriative water rights
- Appropriative rights
 - Rule of Priority all water rights are assigned "appropriation dates," where right to water is time stamped in relation to other water rights
 - Senior water rights holder is entitled to make full use of its rights before a junior rights holder is entitled to divert any water.
- Riparian rights
 - For riparian water rights, all users on a given body of water must curtail their use to what is "reasonable."
- Article X, Section 2 of the California Constitution requires all use of water to be "reasonable and beneficial."

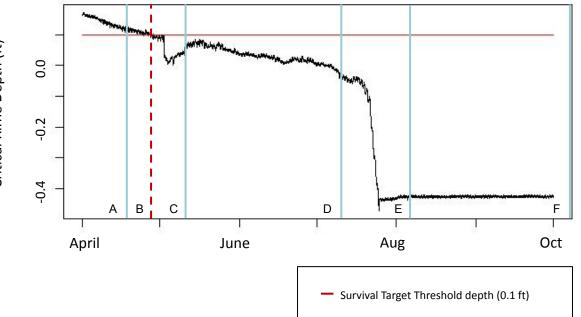
U.S. Drought Monitor in California


	D0	D1	D2	D3	D4
% of weeks in WY10-WY21	89%	83%	76%	57 %	34%

Source is U.S. Monitor

Challenge #2: Responding to drought early enough and at the right geographic scale

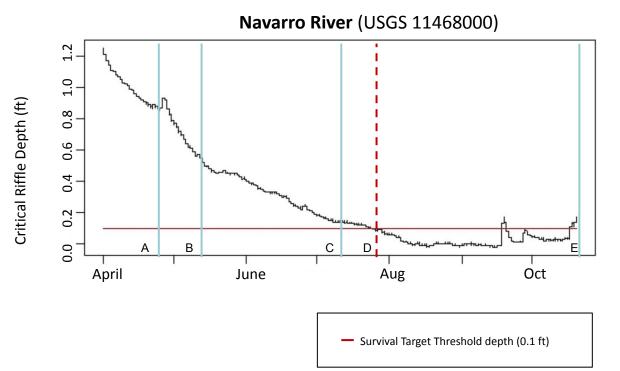
- <u>April 21, 2021</u> Governor proclaimed a drought emergency, covering the Russian River watershed of Sonoma and Mendocino counties.
- <u>May 10, 2021</u> Governor expanded the drought emergency proclamation to include Klamath River, Sacramento-San Joaquin Delta and Tulare Lake Watershed, covering 41 of 58 counties.
- July 8, 2021 Governor called on Californians to voluntarily reduce water use by 15% and expanded drought emergency proclamation to include nine additional counties, covering 50 of 58 counties.
- October 19, 2021 Governor expanded the drought emergency proclamation statewide to include eight remaining counties.



Effects of California's Drought Response

Russian River Tributary - Upper Green Valley Creek (TU GV04)

California's Drought Response:


- A. April 21, 2021 Governor proclaimed a drought emergency, covering the Russian River watershed of Sonoma and Mendocino counties.
- C. May 10, 2021 Governor expanded the drought emergency proclamation to include Klamath River, Sacramento-San Joaquin Delta and Tulare Lake Watershed, covering 41 of 58 counties.
- D. July 8, 2021 Governor called on Californians to voluntarily reduce water use by 15% and expanded drought emergency proclamation to include nine additional counties, covering 50 of 58 counties.
- E. August 2, 2021 Upper Russian River watershed curtailment orders were issued
- F. October 19, 2021 Governor expanded the drought emergency proclamation statewide to include eight remaining counties.

Survival Target Threshold depth

B. April 26, 2021 – Flows were critically low and were at minimum Survival Target Threshold depths.

Effects of California's Drought Response

California's Drought Response:

- A. April 21, 2021 Governor proclaimed a drought emergency, covering the Russian River watershed of Sonoma and Mendocino counties.
- B. May 10, 2021 Governor expanded the drought emergency proclamation to include Klamath River, Sacramento-San Joaquin Delta and Tulare Lake Watershed, covering 41 of 58 counties.
- C. July 8, 2021 Governor called on Californians to voluntarily reduce water use by 15% and expanded drought emergency proclamation to include nine additional counties, covering 50 of 58 counties.
- E. October 19, 2021 Governor expanded the drought emergency proclamation statewide to include eight remaining counties.

Survival Target Threshold depths

D. July 24, 2021 – Flows were critically low and were at minimum Survival Target Threshold depths.

Effects of California's Drought

California

Challenge #2: Responding to drought early enough and at the right geographic scale

Existing Water Code creates a challenge:

Water Code 1058.5.

(a) This section applies to any emergency regulation adopted by the board for which the board makes both of the following findings:

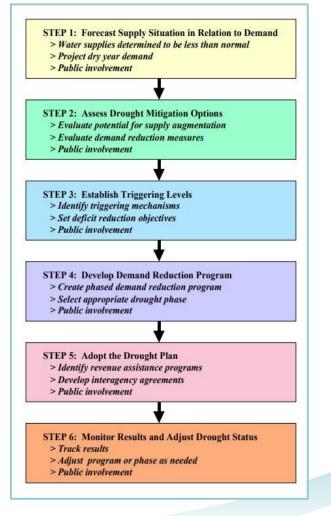
(1) The emergency regulation is adopted to prevent the waste, unreasonable use, unreasonable method of use, or unreasonable method of diversion, of water, to promote water recycling or water conservation, to require curtailment of diversions when water is not available under the diverter's priority of right, or in furtherance of any of the foregoing, to require reporting of diversion or use or the preparation of monitoring reports.

(2) The emergency regulation is adopted in <u>response to conditions which exist, or are threatened, in a</u> <u>critically dry year immediately preceded by two or more consecutive below normal, dry, or critically dry years</u> or during a period for which the <u>Governor has issued a proclamation of a state of emergency under the</u> <u>California Emergency Services Act</u> (Chapter 7 (commencing with Section 8550) of Division 1 of Title 2 of the Government Code) based on drought conditions.

(b) Notwithstanding Sections 11346.1 and 11349.6 of the Government Code, any findings of emergency adopted by the board, in connection with the adoption of an emergency regulation under this section, are not subject to review by the Office of Administrative Law.

Recommendation #1:

Develop permanent curtailment regulations:


Implement the water rights process annually and standardize process for water shortages and drought

Recommendation #2:

Staff a Drought Program:

- 1) Develop regulation;
- 2) Manage its implementation
 - a) Monitor water availability
 - b) Curtailment system

Recommendation #3:

Set instream flow thresholds for fisheries and public trust:

California Environmental Flow Framework

Recommendation #4:

Consider using regional index to identify fisheries and public trust thresholds:

• E.g., Moidu, H., Obedzinski, M., Carlson, S. M., & Grantham, T. E. (2021). Spatial patterns and sensitivity of intermittent stream drying to climate variability. *Water Resources Research*, *57*(11), e2021WR030314.

• California Environmental Flow Framework

Recommendation #5:

Establish voluntary programs or plans that can be used in-lieu of curtailment

NM	FS Recommendations:	Challenge #1	Challenge #2
1.	Develop permanent curtailment regulations that implements the water rights process annually	Х	It depends
2.	Dedicate staff for monitoring water availability and managing curtailment regulation	Х	Х
3.	Set instream flow thresholds for fisheries and public trust	Х	It depends
4.	Consider using regional index to identify public trust thresholds	Х	Х
5.	Establish voluntary programs or plans that can be used in-lieu of curtailment	It depends	It depends

Questions / Comments

The Drought Flows Monitor

An early warning system for freshwater ecosystems

Julie Zimmerman, Kirk Klausmeyer, Gabe Rossi, Jennifer Carah, Mia van Docto, Alyssa Obester, Jeanette Howard, Robert Holmes, Monty Schmitt, Matt Clifford, Charlie Schneider

Are there early indicators for critically dry conditions in the coming dry season?

Can we identify critically dry conditions without stream gages?

•ID coastal streams expected to be critically dry at any point in the year, leading to ecosystem stress

•ID streams with a high risk of critically dry flows during the dry season baseflow period that warrant changes in water management or other drought management actions

Approach

Uses the Natural Flows Database (monthly natural flow predictions, 1950-present): https://rivers.codefornature.org/#/home

The Nature W NATURAL FLOWS

Science Map Data FAQ

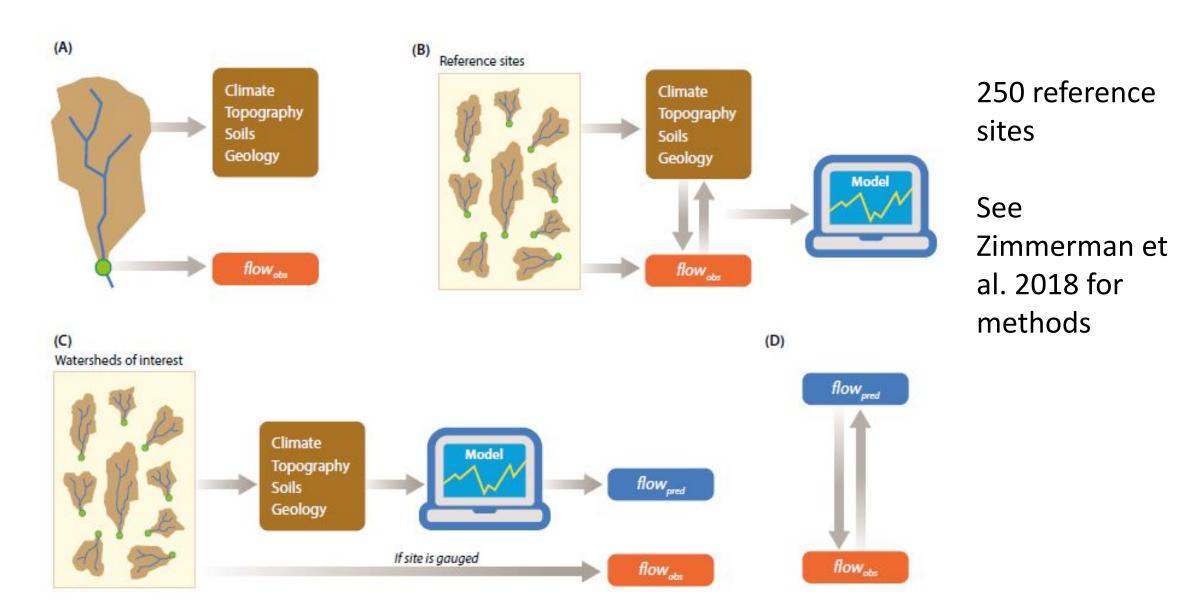
California Natural Flows Database

Water is essential for California's people, economy, and environment. Centuries of water management through dams and diversion have altered the flows in many streams and rivers, which can harm the freshwater ecosystems. The Nature Conservancy and the United States Geological Survey (USGS), and other partners have generated estimates of natural flows (expected streamflow in the absence of human modification) in all the streams and rivers in California from 1950 to the present.

Explore the Data

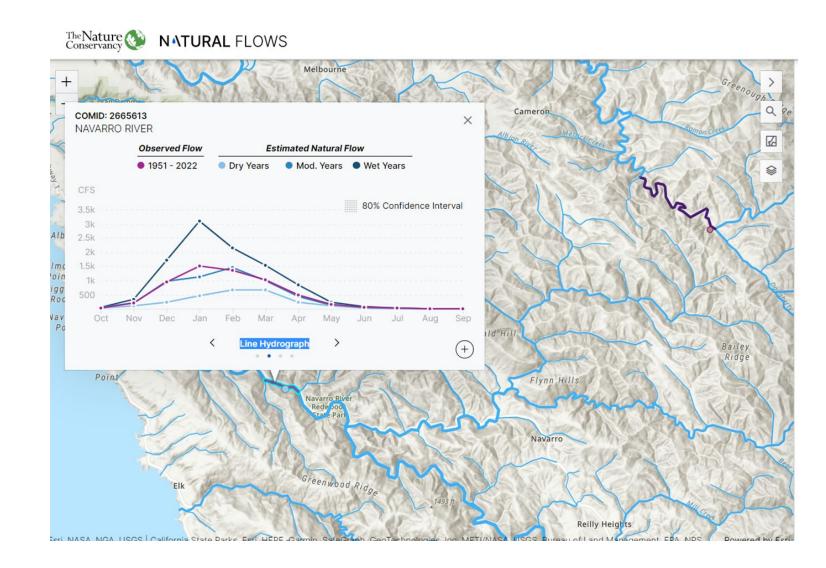
Science

Understanding natural flows and patterns of flow alteration is an important first step in improving the management of California's rivers and streams for human and ecosystem benefits. Read more about how the partners

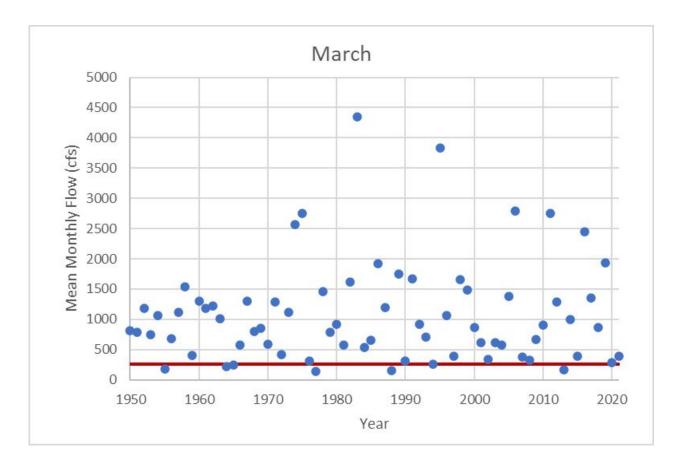

Мар

Explore, visualize, and download the natural flows data with a map-based application. Search for stream segments, visualize estimated flow rates, and download flow data from an intuitive graphical user interface.

Data download and API


Feel more comfortable at the command line? Query the data directly using a REST API. Follow the link below for detailed documentation and code samples in R, Python, and JavaScript.

Monthly flow models


Approach

Predicted flow for each month calculated as a percentile of the range of predicted flows from 1950-2022 for the same month, assigned to river reaches (COMID)

Approach

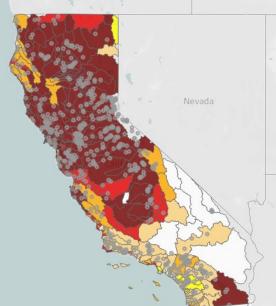
- Critically dry conditions = monthly predicted natural flow
 ≤10th percentile of the distribution of natural flow for the same month
- HUC 8/12 watersheds combined by large named streams, most downstream reach of largest river used for summary

Categories follow U.S. Drought Monitor

https://droughtmonitor.unl.edu/

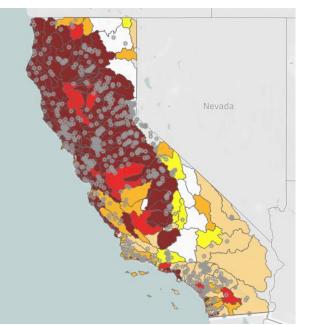
Category	Description	Possible Impacts	USGS Weekly Streamflow (Percentiles)
D0	Abnormally Dry	 Going into drought: short-term dryness slowing planting, growth of crops or pastures Coming out of drought: some lingering water deficits pastures or crops not fully recovered 	21 to 30
D1	Moderate Drought	 Some damage to crops, pastures Streams, reservoirs, or wells low, some water shortages developing or imminent Voluntary water-use restrictions requested 	11 to 20
D2	Severe Drought	 Crop or pasture losses likely Water shortages common Water restrictions imposed 	6 to 10
D3	Extreme Drought	Major crop/pasture lossesWidespread water shortages or restrictions	3 to 5
D4	Exceptional Drought	 Exceptional and widespread crop/pasture losses Shortages of water in reservoirs, streams, and wells creating water emergencies 	0 to 2

2017 Wet year


1977 Dry year

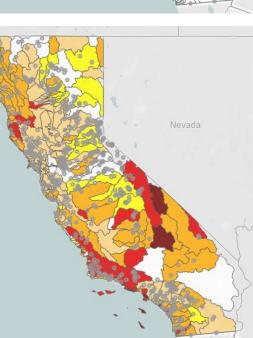
Drought category (percentile) Exceptional drought (lowest estimate)

- Extreme drought (2-5th)
 Severe drought (6-10th)
 Moderate drought (11-20th)
 Abnormally dry (21-30th)
 Normal / wet (31-100th)
 Zero flow estimate
- SWRCB Regions 1-3

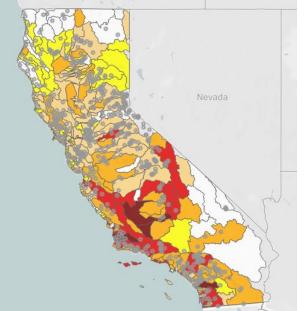

March


April

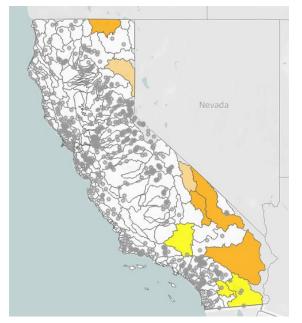
August

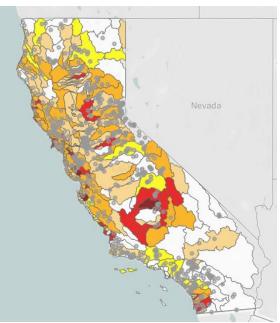

2011 Wet year

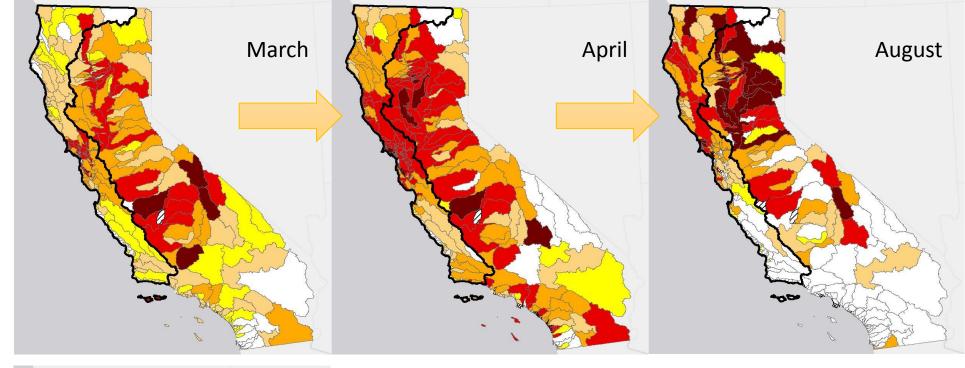
March


2013 Dry year

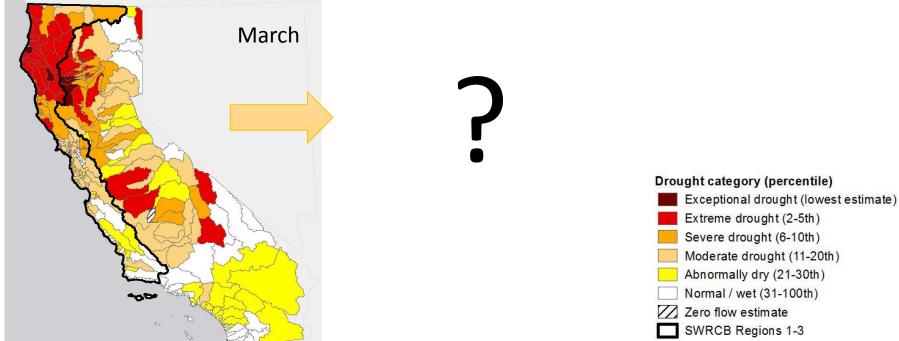
Drought category (percentile) Exceptional drought (lowest estimate) Extreme drought (2-5th) Severe drought (6-10th) Moderate drought (11-20th) Abnormally dry (21-30th) Normal / wet (31-100th) Zero flow estimate SWRCB Regions 1-3

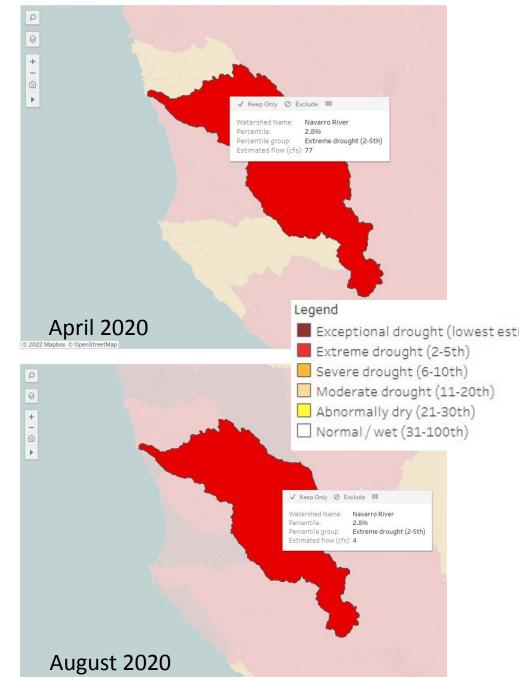


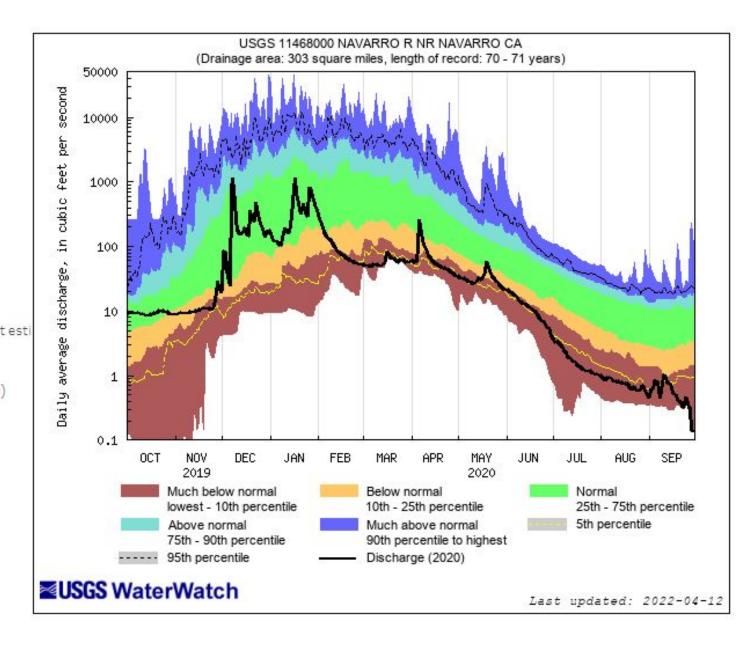

April



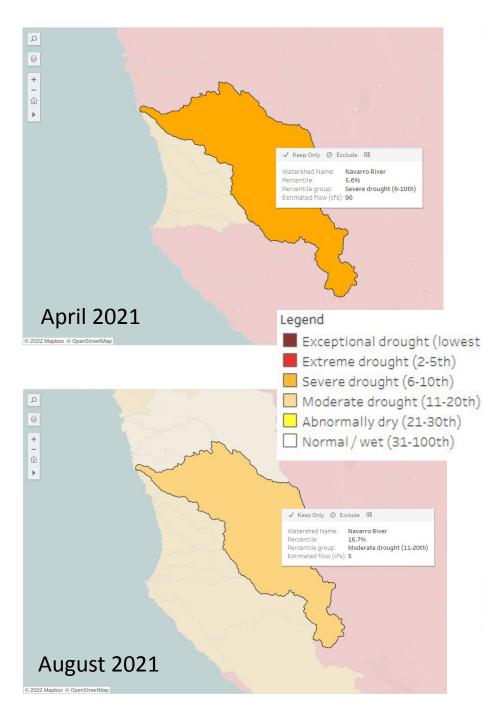
August

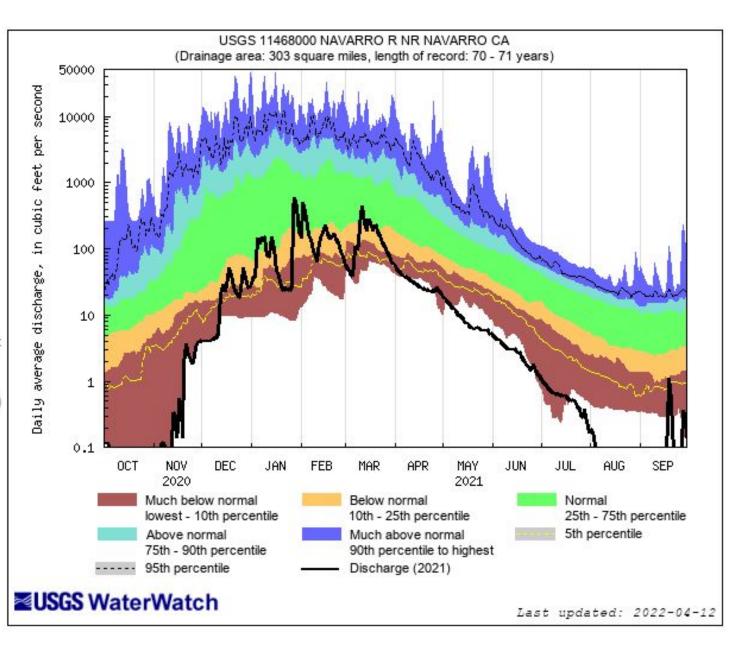


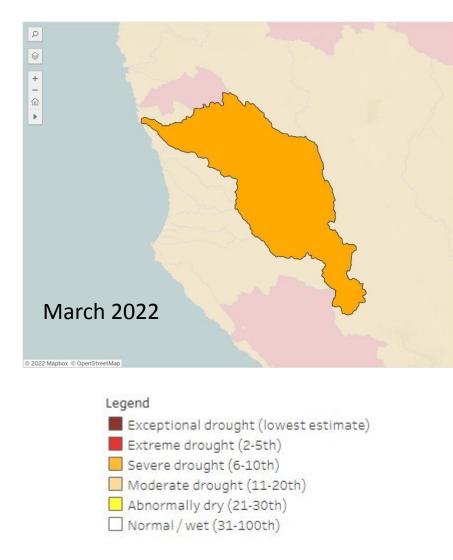


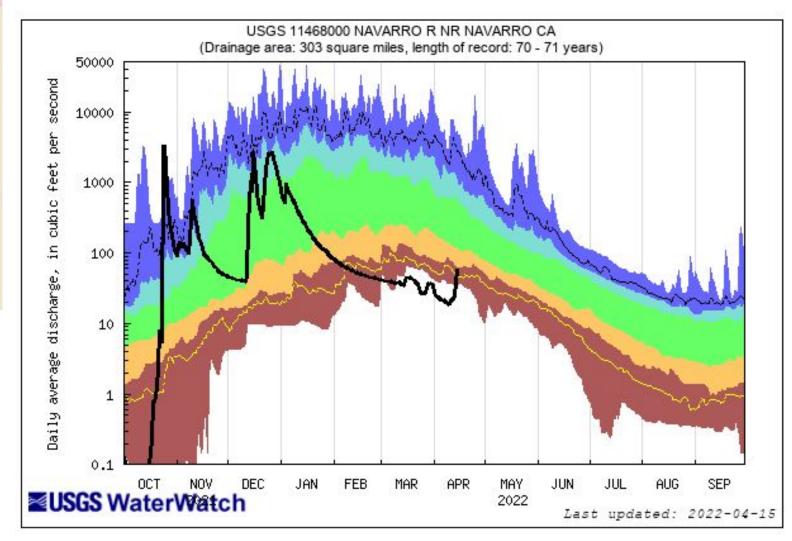


2022

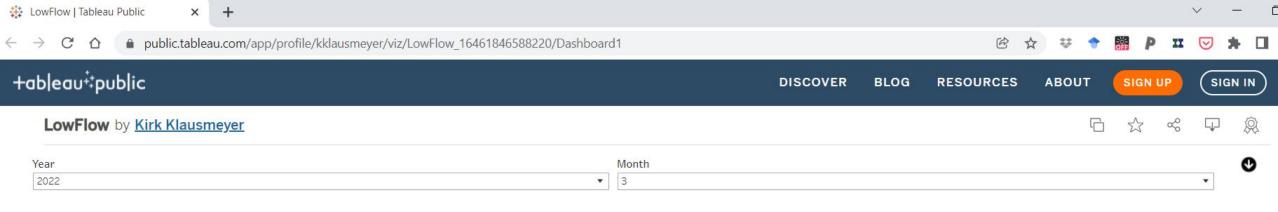

These maps will be updated in May when the April climate data becomes available



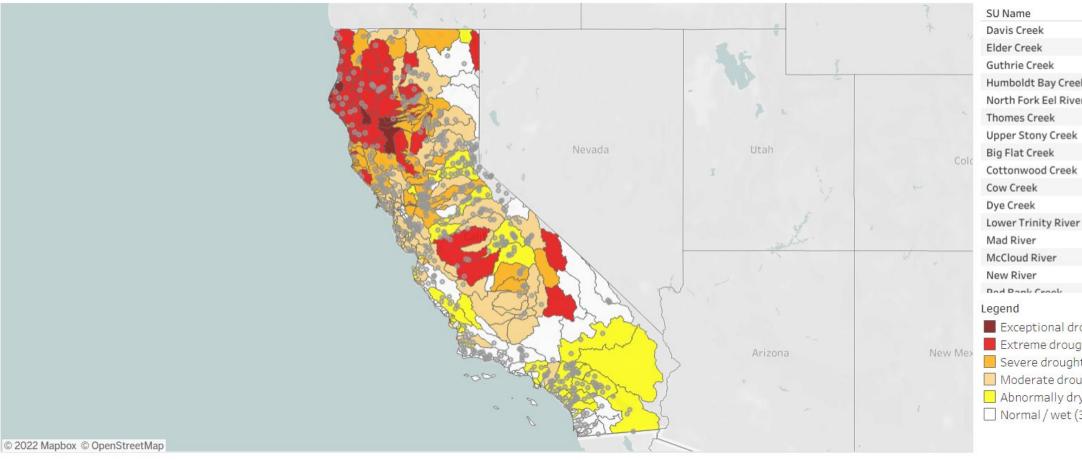




© 2022 Mapbox © OpenStreetMap


Conclusions

- Critically dry conditions in late spring are unlikely to improve over the dry season
 - March and April conditions tend to persist
- Many individual stream reaches go dry by late summer even under normal conditions
 - Summarizing by larger watershed evaluates conditions in perennial streams and is a good indicator of overall watershed condition
- Natural flow conditions that are expected to be critically dry will result in ecosystem stress
 - Reducing alteration from human use is warranted


Applications

- Curtailments
 - Critically dry conditions indicate further alteration from human use should be minimized
 - March and April conditions can indicate curtailments or other drought management actions are needed
 - Alteration analyses can prioritize watersheds for actions, but data are limited to stream gages
- Stream drying
 - Critically dry conditions in watersheds prone to drying can indicate action is needed to prevent further ecosystem stress
 - Watersheds with salmon or other listed species can be prioritized

Watershed Map

Driest Watersheds

SU Name	2 77
Davis Creek	1.4%
Elder Creek	1.4%
Guthrie Creek	1.4%
Humboldt Bay Creeks	1.4%
North Fork Eel River	1.4%
Thomes Creek	1.4%
Upper Stony Creek	1.4%
Big Flat Creek	2.7%
Cottonwood Creek	2.7%
Cow Creek	2.7%
Dye Creek	2.7%
Lower Trinity River	2.7%
Mad River	2.7%
McCloud River	2.7%
New River	2.7%
Bod Book Crook	2 704
Legend	
 Exceptional drough Extreme drought (2 Severe drought (6-1 Moderate drought (Abnormally dry (21- Normal / wet (31-10) 	-5th) .0th) 11-20th) 30th)

Lessons Learned from Recent Droughts

Salmonid Restoration Federation April 21, 2022 Erin Ragazzi

Water Boards

State Water Resources Control Board, Division of Water Rights

Presentation Overview

- Components of a Successful Drought Emergency Regulation
- Lessons Learned
- •Next Steps

Components of Successful Drought Emergency Regulation (for fisheries)

Authority

Flows for Drought Conditions

Other Uses

Extensive Coordination with Fish Agencies

Opportunity for Local Actions & Solutions

Public Engagement

Ability to Learn and Adapt

EXECUTIVE DEPARTMENT STATE OF CALIFORNIA

PROCLAMATION OF A STATE OF EMERGENCY

WHEREAS climate change is intensifying the impacts of droughts on our communities, environment, and economy, and California is in a second consecutive year of dry conditions, resulting in drought or near-drought throughout many portions of the State; and

WHEREAS recent warm temperatures and extremely dry soils have further depleted the expected runoff water from the Sierra-Cascade snowpack, resulting in a historic and unanticipated estimated reduction of 500,000 acre feet of water – or the equivalent of supplying water for up to one million households for one year – from reservoirs and stream systems, especially in the klamath River, Sacramento-San Joaquin Delta, and Tulare Lake Watersheds; and

WHEREAS the extreme drought conditions through much of the State present urgent challenges, including the risk of water shortages in communities, greatly increased wildline activity, diminished water for agricultural production, degraded habitat for many fish and wildlife species, threat of saltwater contamination of large fresh water supplies conveyed through the Sacramento-San Joaquin Delta, and additional water scarcity if drought conditions continue into next year; and

WHEREAS Californians have saved water through conservation efforts, with urban water use approximately 16% below where it was at the start of the last drought years, and I encourage all Californians to undertake actions to further eliminate wasteful water practices and conserve water; and

WHEREAS on April 21, 2021, I issued a proclamation directing state agencies to take immediate action to bolster drought resilience and prepare for impacts on communities, businesses, and ecosystems, and proclaiming a State of Emergency to exist in Mendocino and Sonoma counties due to severe drought conditions in the Russian River Watershed; and

WHEREAS additional expedited actions are now needed in the Klamath River, Sacramento-San Joaquin Delta, and Tulare Lake Watersheds; and

WHEREAS it is necessary to expeditiously miligate the effects of the drought conditions within the Klamath River Watershed Counties [Del Norte, Humboldt, Modoc, Sikkyou, and Trinity counties), the Sacramento-San Joaquin Delta Watershed Counties (Alameda, Alpine, Amador, Butte, Calaveras, Colusa, Contra Costa, El Dorado, Fresno, Glenn, Lake, Lassen, Madera, Mariposa, Merced, Modoc, Napa, Nevada, Placer, Plumas, Sacramento, San Benito, San Joaquin, Shasta, Sierra, Siskiyou, Solano, Stanislaus, Sutter, Tehama, Trinity, Tuolumne, Yolo, and Yuba counties), and the Tulare Lake Watershed Counties (Fresno, Kern, Kings, and Tulare counties) to ensure the protection of health, safety, and the environment; and

WHEREAS under Government Code Section 8558(b), I find that the conditions caused by the drought conditions, by reason of their magnitude, are or are likely to be beyond the control of the services, personnel, equipment, and facilities of any single local government and require the combined forces of a mutual aid region or regions to appropriately respond; and

Authority

•Water Code section 1058.5

- Governor issues drought proclamation(s) that provides direction and authority to Water Board
 - Board to consider adoption of emergency regulations "to curtail water diversions when water is not available at water right holders' priority of right or to protect releases of stored water." (paragraph 5)
 - "to ensure critical instream flows for species protection in the Klamath..." [State Water Board & CDFW] "shall evaluate the instream flows and other actions needed to protect salmon, steelhead, and other native fishes..." (paragraph 6)
 - Environmental review by state agencies required by CEQA are suspended to extent necessary for drought (paragraph 11)

California Water Boards

Flows for Drought Conditions

- Establishing flow requirements in California is inherently contentious and controversial
- Most streams lack comprehensive flow requirements
- Drought (bare minimum) flows are needed
 - Mill and Deer (2014 15, + Antelope; 2021 ??)
 - Scott and Shasta (2021 ??)

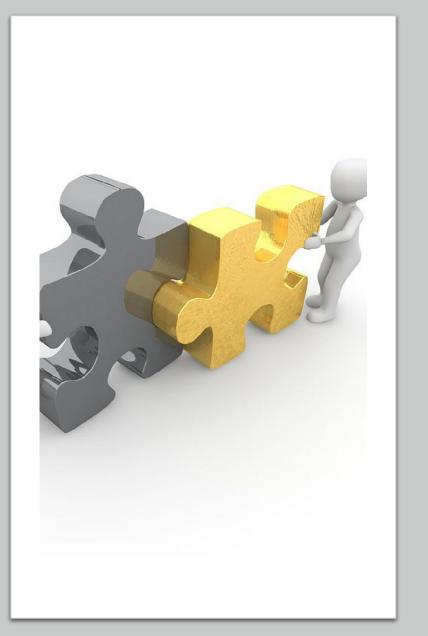
California Water⁵Boards

Recognize and Provide for Other Uses

- Minimum diversions for:
 - Human Health and Safety

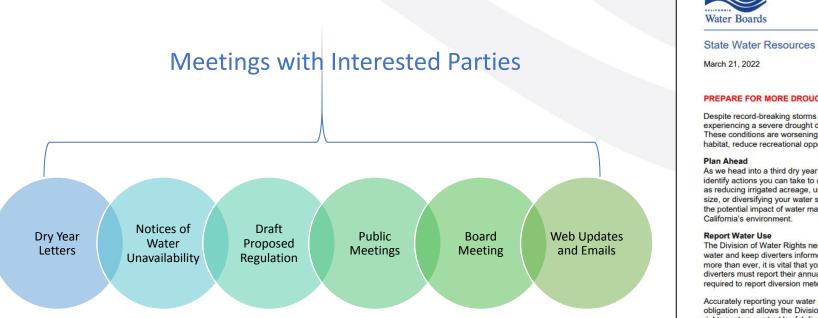
California Water Boards

- Livestock
- Instream Uses
- Substitutions of Water


Extensive Coordination with Fish Agencies

- Drought Flow Recommendation
- Ongoing Implementation

Source: Stream Flow Enhancement Program (ca.gov)


California Water⁷Boards

Opportunity for Local Actions and Solutions

- Alternative means to meet minimum flows or provide other fishery benefits
 - Solutions can be on three different scales:
 - Watershed-wide;
 - Tributary-wide; or
 - Individual
 - Must provide equal or better protection in comparison to flow requirements
 - Offers flexibility
 - State Water Board approval required

Public Engagement

Water Board

State Water Resources Control Board

PUBLIC WORKSHOP ON PROPOSED DROUGHT EMERGENCY **REGULATION FOR THE RUSSIAN RIVER WATERSHED**

As California heads into a third consecutive dry year, the State Water Resources Control Board (State Water Board) Division of Water Rights (Division) is considering the readoption of an emergency regulation to curtail water rights in the Russian River watershed. After evaluating the 2021 Emergency Regulation, the Division is proposing changes for 2022 that provide clarity, improve implementation, and address stakeholder feedback the Division received over the past year. The revised emergency regulation features four primary changes: (1) a refined water availability methodology for the Russian River Watershed; (2) protect water for fish habitat in Lower Russian River tributaries; (3) support for a voluntary conservation program that would work in parallel with curtailments; and (4) improved administration of curtailments and exceptions across watersheds. Additionally, the final draft regulation will include incidental updates to regulation sections pertaining to other watersheds resulting from proposed renumbering.

State Water Board staff will hold a public workshop to provide information and answer questions related to the proposed emergency regulation. The workshop will be offered as both an in person meeting as well as a virtual meeting. Details of the public workshop are as follows:

Thursday, April 14, 2022 1:30 p.m. North Coast Regional Water Quality Control Board David C. Joseph Room 5550 Skylane Blvd., Suite A Santa Rosa, CA 95403 Zoom Broadcast (pre-registration required) https://us02web.zoom.us/webinar/register/WN_N0Mg3XkAT4SFig9uI9Z9EA

water and keep diverters inform more than ever, it is vital that yo diverters must report their annua required to report diversion meter Accurately reporting your water

obligation and allows the Divisio rights system, protect lawful dive reporting by all diverters is the c

We are experiencing historic dry

Dry Conditions

Background On April 21, 2021, Governor Gavin Newsom issued a drought emergency proclamation in Mendocino and Sonoma counties due to drought conditions in the Russian River watershed. The April 2021 Proclamation directed the State Water Board to consider adoption of an emergency regulation to ensure adequate minimum water supplies and

to curtail water diversions when water is not available. On March 28, 2022, Governor Newsom issued an executive order confirming the need for such emergency regulation following the driest January to March in California's recorded history.

E. JOAQUIN ESQUIVEL, CHAIN | EILEEN SOBECK, EXECUTIVE DIRECTOR

1001 I Street, Sacramento, CA 95814 | Mailing Address: P.O. Box 100, Sacramento, CA 95812-0100 | www.waterboards.ca.gov

month, but January and February 2022 were the direct we ve seen Statewide, precipitation is less than half the yearly average, and dry conditions are forecast to continue through spring. Last year, extreme drought conditions led to unprecedented actions by the State Water Board that included curtailment of water rights in many California watersheds.

E. JOAQUIN ESQUIVEL, CHAIR | EILEEN SOBECK, EXECUTIVE DIRECTOR

1001 | Street, Sacramento, CA 95814 | Mailing Address: P.O. Box 100, Sacramento, CA 95812-0100 | www.waterboards.ca.gov

California Water Boards

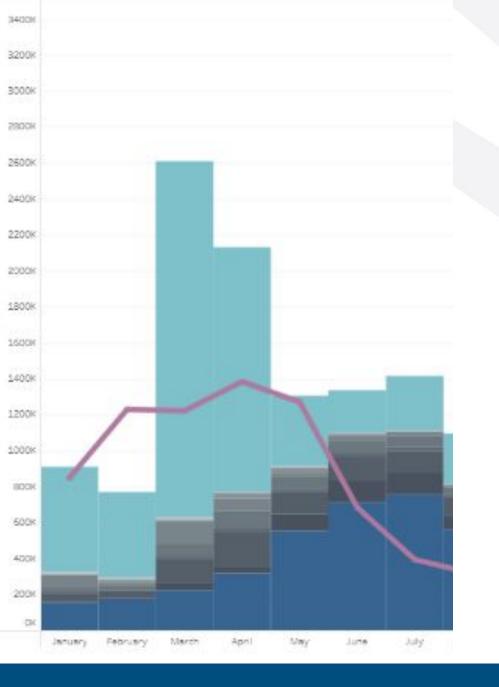
Ability to Learn and Adapt

- Emergency regulations in effect for short period of time
 - Feedback Loop readoption provides opportunity to assess what worked, what did not work so well, and make updates
- Built in flexibility, when appropriate:
 - Scott-Shasta regulation provides for update to flows with new information supported by CDFW after coordination with NMFS
 - Mill-Deer regulation provides for pulse flows based on fish presence and coordination with CDFW (diverters consulted)
 - Local Cooperative Solutions
- Information order authority
 - Provides information to support regulation implementation

Lessons Learned & Areas for Improvement

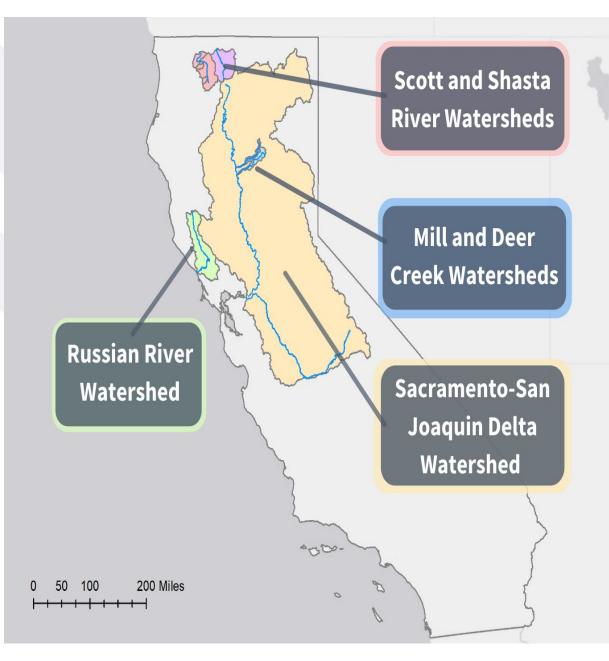
- Feedback Loop
- •Communication of Regulation
- •Data
- •Tools (ongoing development underway)

Communication of Regulation

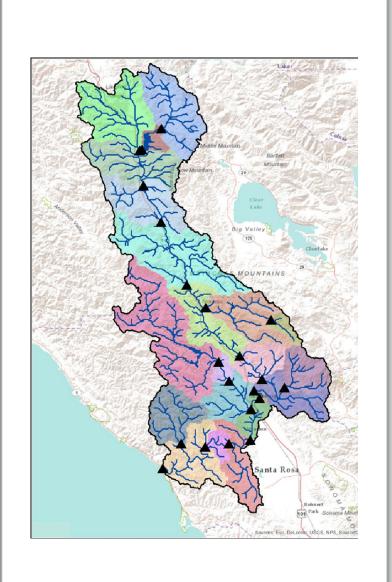

- Distilling down complex regulation is difficult and offers room for improvement
 - Fact Sheets
 - Curtailment Status in Multiple Formats (lists, graphics)
 - Simplify Curtailment & Information Order Letters
 - Recorded Webinars
 - Word of Mouth or Other Community Driven Methods of Communication
 - Meet with Engaged Community Members
 - Media

Data (areas for improvement)

- Water Measurement Regulations
 - Improved compliance
 - Improved data quality
- Annual water use data
 - Unreported water use
 - Errors in reported data
- Climate and streamflow forecasting data
- Gaging


Tools (leaps and bounds beyond 2014-16 drought)

- Water Unavailability Methodology for the Delta Watershed
- Water Supply and Demand Visualization Tool
- Water Rights Demand Data Analysis Methodology
- Initial Hydrology Modeling (Coming 2022)
- Water Allocation Tool (Coming 2022)
- Develop tools to inform assessment of trade-offs of flow alternatives and other uses

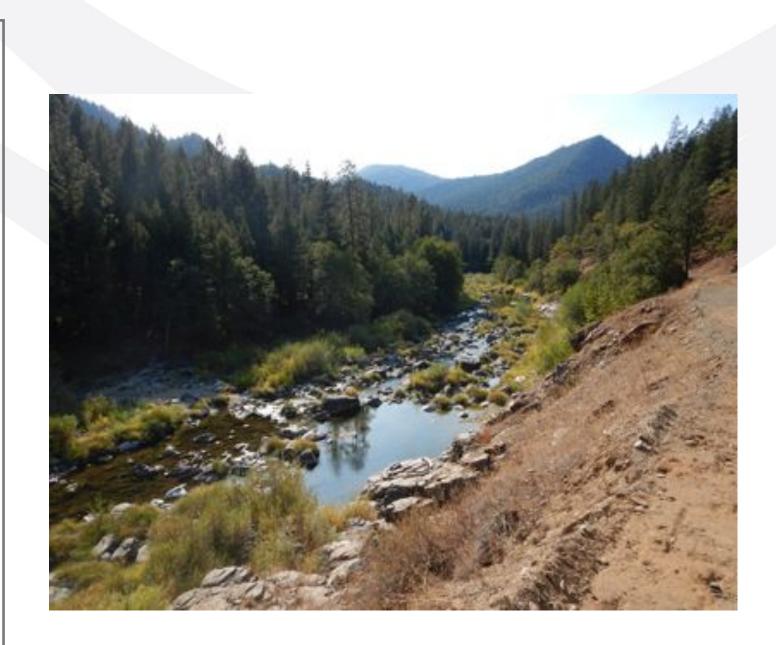

California Water¹⁴Boards

Next Steps

- Short-term:
 - Update and maintain existing efforts (hang in there)
 - Education and outreach to local communities
 - Support CDFW and NMFS voluntary drought initiative program
 - Funding for water conservation, with focus long-term actions
- Mid-term: Cover more watersheds
 - Resources
 - Drought Flow Recommendations or Other Criteria

California Water Boards

Next Steps


- Long-term: Establish year-round, long-term flows in key watersheds
 - Resources
 - Flow Recommendations
 - Flow Setting/CEQA
 - Ongoing Implementation & Adaptive Management

Additional Information & Updates

• Drought Webpage:

- www.waterboards.ca.gov/drought
- Email Subscription Lists :
 - https://www.waterboards.ca.gov/resources/email_subscriptions/
 - Under "State Water Resources Control Board", then "Water Rights"
 - Bay-Delta: "Delta Drought"
 - Mill & Deer Creeks: "Mill Deer Drought"
 - Russian River: "Russian River Drought"
 - Scott & Shasta Rivers: "Scott-Shasta Drought"

Questions?

California Water[®]Boards

An Ecological Drought Indicator Framework for California

SRF 2022: Drought Response Session April 21, 2022

Ted Grantham and Jeff Mount

Supported by funding from National Oceanic Atmospheric Administration's (NOAA) National Integrated Drought Information System (NIDIS)

PPIC WATER POLICY CENTER

Current US Drought Monitor

California

	Category	Description	Possible Impacts	Palmer Drought Severity Index (PDSI)	CPC Soil Moisture Model (Percentiles)	<u>USGS</u> <u>Weekly</u> Streamflow (Percentiles)	Standardized Precipitation Index (SPI)	Objective Drought Indicator Blends (Percentiles)
	DO	Abnormally Dry	Going into drought: • short-term dryness slowing planting, growth of crops or pastures Coming out of drought: • some lingering water deficits • pastures or crops not fully recovered	-1.0 to -1.9	21 to 30	21 to 30	-0.5 to -0.7	21 to 30
	D1	Moderate Drought	 Some damage to crops, pastures Streams, reservoirs, or wells low, some water shortages developing or imminent Voluntary water-use restrictions requested 	-2.0 to -2.9	11 to 20	11 to 20	-0.8 to -1.2	11 to 20
-10-	D2	Severe Drought	Crop or pasture losses likely Water shortages common Water restrictions imposed	-3.0 to -3.9	6 to 10	6 to 10	-1.3 to -1.5	6 to 10
	D3	Extreme Drought	 Major crop/pasture losses Widespread water shortages or restrictions 	-4.0 to -4.9	3 to 5	3 to 5	-1.6 to -1.9	3 to 5
April 14, 2022	D4	Exceptional Drought	 Exceptional and widespread crop/pasture losses Shortages of water in reservoirs, streams, and wells creating water emergencies 	-5.0 or less	0 to 2	0 to 2	-2.0 or less	0 to 2

Ranges

NIDIS drought categories

D0 - Abnormally Dry

- Soil is dry; irrigation delivery begins early
- Dryland crop germination is stunted
- Active fire season begins

D1 - Moderate Drought

- Dryland pasture growth is stunted; producers give supplemental feed to cattle
 of CA
- Landscaping and gardens need irrigation earlier; wildlife patterns begin to change
- · Stock ponds and creeks are lower than usual

D2 - Severe Drought

- Grazing land is inadequate
- Fire season is longer, with high burn intensity, dry fuels, and large fire spatial extent
- of CA (D2-D4)

92.4%

100.0%

of CA

(D0-D4)

(D1-D4)

 Trees are stressed; plants increase reproductive mechanisms; wildlife diseases increase

D3 - Extreme Drought Livestock need expensive sup

F

Livestock need expensive supplemental feed; cattle and horses are sold; little pasture remains; fruit trees bud early; producers begin irrigating in the winter Fire season lasts year-round; fires occur in typically wet parts of state; burn bans are implemented (D3–D4)

 Water is inadequate for agriculture, wildlife, and urban needs; reservoirs are extremely low; hydropower is restricted

D4 - Exceptional Drought

vegetable yields are low; honey harvest is small
Fire season is very costly; number of fires and area burned are extensive

Fields are left fallow; orchards are removed;

 Fish rescue and relocation begins; pine beetle infestation occurs; forest mortality is high; wetlands dry up; survival of native plants and animals is low; fewer wildflowers bloom; wildlife death is widespread; algae blooms appear

Source(s): NDMC, NOAA, USDA

28.3%

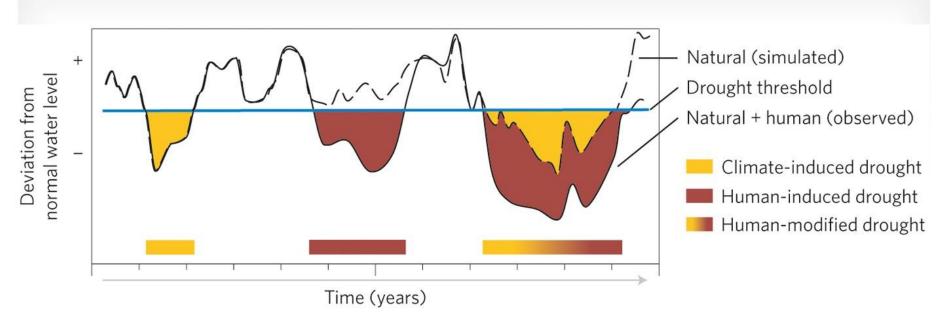
of CA

(D4)

3

Limitations of drought monitor

- Relies primarily on meteorological indicators, which may not reflect ecologically available water
- Does not account for impacts of water management operations, including reservoirs and conveyance infrastructure
- Antecedent conditions not considered, which affect ecological response to drought
- Lack of transparency around drought status calculation


What is ecological drought?

"episodic deficit in water availability that drives ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and triggers feedback in natural and/or human systems"

Source: Crausbay et al. 2017 AMS

Ecological drought intensified by human activities

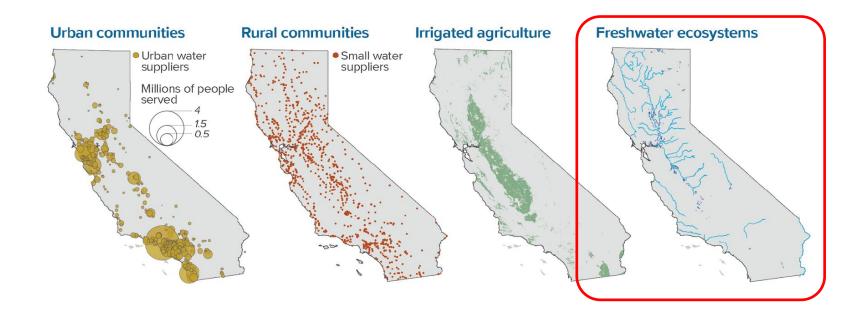
Source: Van Loon et al. 2016 Nature Geoscience

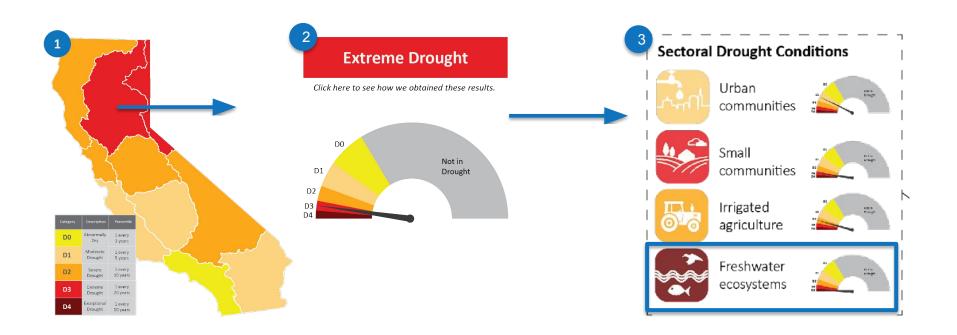
Goals for an ecological drought indicator

- Represent ecologically available water
- Reflect stress to ecosystem from both hydro-meteorological drought and management actions.
- Account for antecedent climate conditions (lag effects)
- Use transparent, quantitative methods for indicator calculation
- Applicable to different ecosystems and management contexts

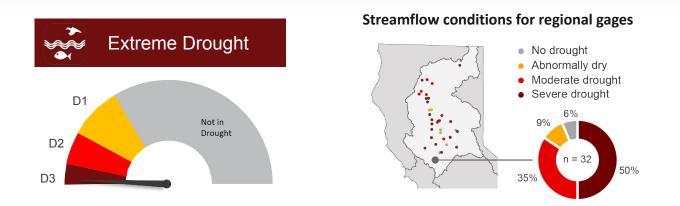
"Linking indicators of drought to multi-sectoral impacts" project

- Funded by NOAA's National Integrated Drought Information System (NIDIS) Program
- Overarching goal is to develop new drought indicators that:
 - Account for the "water grid"
 - Consider sector-specific impacts (including **ecosystems**)
- "Proof of concept" to guide improvements to the NIDIS Drought Monitor


California water grid


PPIC WATER POLICY CENTER

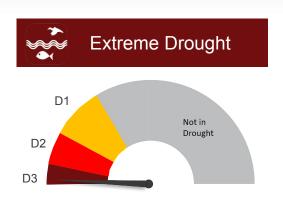
California water sectors

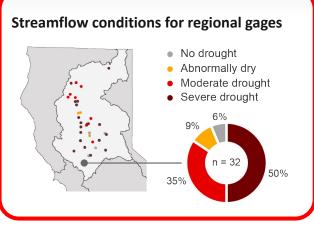


Vision for drought monitor 2.0

Ecosystem drought indicator dashboard

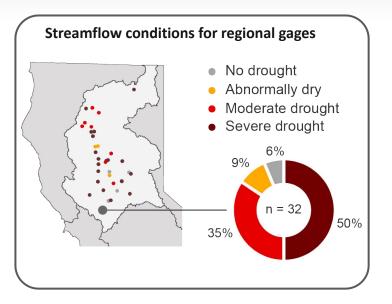
- Freshwater ecosystems are experiencing **extreme drought** stress as a consequences of extreme low precipitation, high evapotranspiration, and low snowpack, and warm temperatures.
- Stream flows in the region exhibit extreme drought conditions
- Native freshwater species are likely experiencing high physiological stress, reproductive failure, and high mortality from limited water availability and water quality degradation.




Ecosystem drought indicator categories

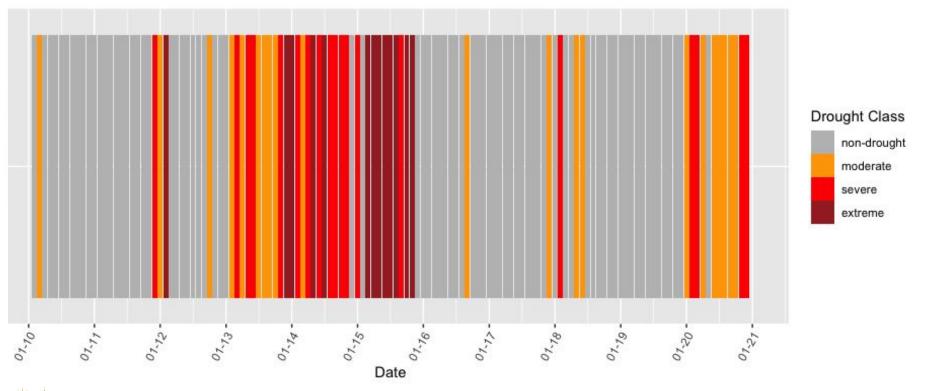
Drought Category	Indicator Range	NIDIS Drought Category	Range
Non-drought	> 40	Non-drought	>30
Moderate drought	25 - 40	Abnormally dry (DO) Moderate drought (D1)	20 - 30 10 - 20
Severe drought	10 - 25	Abnormally dry (DO) Moderate drought (D1)	20 - 30 10 - 20
Extreme drought	< 10	Severe drought (D2) Extreme drought (D3) Exceptional drought (D4)	5 - 10 2 - 5 0 - 2

Ecosystem drought indicator dashboard

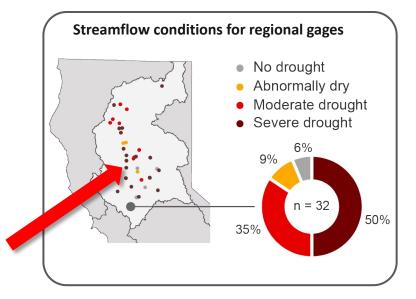


- Freshwater ecosystems are experiencing **extreme drought** stress as a consequences of extreme low precipitation, high evapotranspiration, and low snowpack, and warm temperatures.
- Stream flows in the region exhibit extreme drought conditions
- Native freshwater species are likely experiencing high physiological stress, reproductive failure, and high mortality from limited water availability and water quality degradation.

Regional streamflow drought indicator

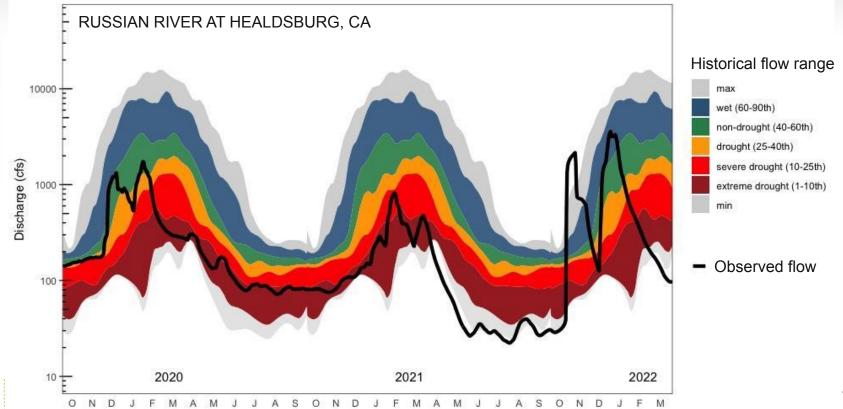


Streamflow indicator classification


Non-drought (D0)	<50% of gages in D1, D2, and D3		
Moderate drought (D1)	≥50% of gages in D1, D2, and D3		
Severe drought (D2)	≥50% of gages in D2 and D3		
Extreme drought (D3)	≥50% of gages in D3		

Streamflow drought series (2010 – 2022)

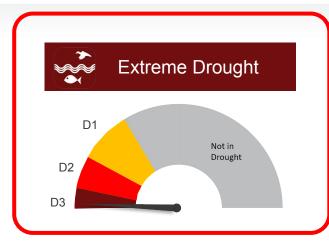
Regional streamflow drought indicator

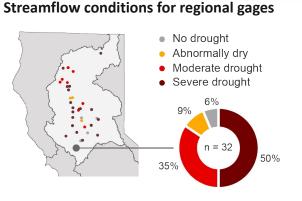


Streamflow index classification

Non-drought (D0)	<50% of gages in D1, D2, and D3
Moderate drought (D1)	≥50% of gages in D1, D2, and D3
Severe drought (D2)	≥50% of gages in D2 and D3
Extreme drought (D3)	≥50% of gages in D3

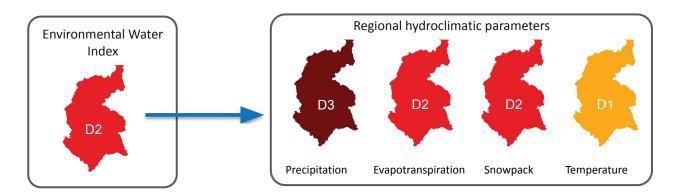
Station specific flow conditions




Streamflow indicator advantages and limitations

- Integrates hydrometeorological conditions and management actions
- Gages over-represent large, dam-regulated rivers and under-represent, smaller, unregulated streams
- Number of long-term gages limited in some hydrologic regions

Ecosystem drought indicator dashboard



- Freshwater ecosystems are experiencing **extreme drought** stress as a consequences of extreme low precipitation, high evapotranspiration, and low snowpack, and warm temperatures.
- Stream flows in the region exhibit extreme drought conditions
- Native freshwater species are likely experiencing high physiological stress, reproductive failure, and high mortality from limited water availability and water quality degradation.

Environmental water indicator

Environmental water indicator components

Runoff index mean monthly values (1985-2020)

молтн	РРТ	ET	SWE	delta(SWE)	Runoff Index
Jan	162	37	72	38	86
Feb	155	49	108	36	70
Mar	141	81	139	31	28
Apr	70	113	129	-11	-33
May	52	158	65	-64	-43
Jun	18	190	15	-50	-122
Jul	3	216	1	-14	-199
Aug	4	196	0	0	-192
Sep	14	149	0	0	-135
Oct	50	99	1	1	-50
Nov	99	48	8	7	44
Dec	161	34	33	25	102

Regional environmental water indicator

E-water_i =
$$\beta_{1,i} \times \text{runoff}_{i}$$
 +
 $\beta_{2,i} \times \text{runoff}_{i-3}$ +
 $\beta_{3,i} \times \text{runoff}_{i-11}$ +
 $\beta_{4,i} \times \text{temp}_{i}$

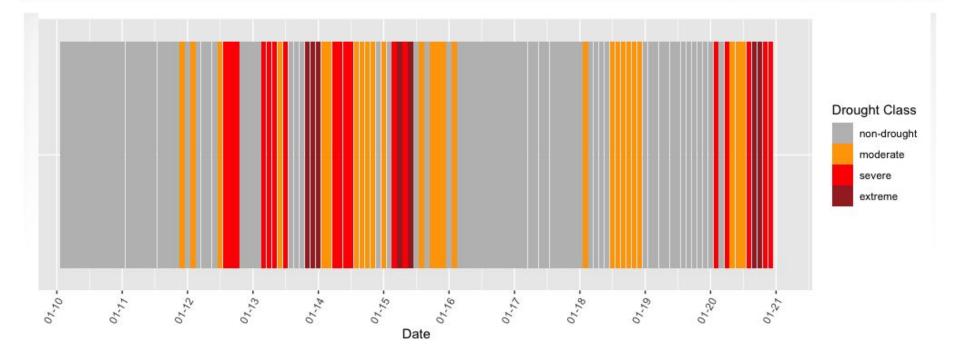
Runoff for current month

Mean runoff for current and previous 3 months

Mean runoff for current and previous 11 months

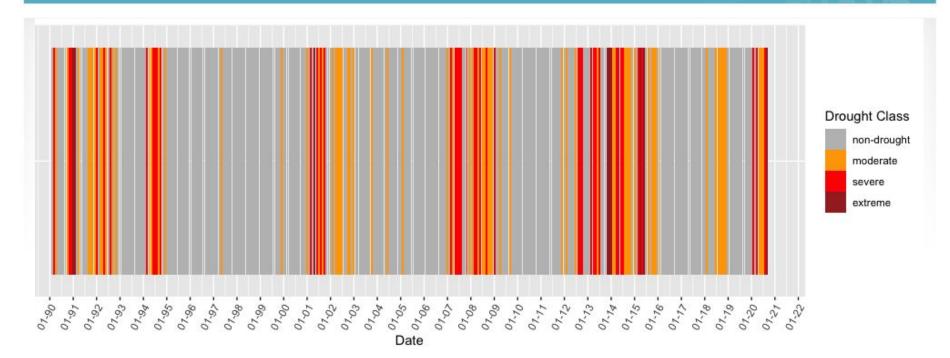
Mean max monthly temperature for current month

where i = month, x = antecedent period, β_{xi} = monthly parameter weight (0 - 1)


Parameter weighting*

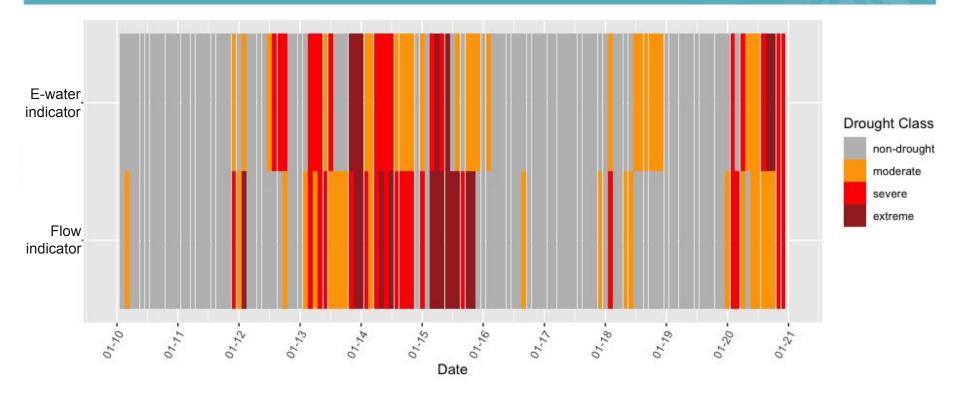
	Fall	Winter	Spring	Summer
Current runoff	0.1	0.3	0.2	0.1
Antecedent runoff (3 months)	0.1	0.3	0.3	0.2
Antecedent runoff (12 months)	0.5	0.3	0.3	0.4
Monthly max temperature	0.3	0.1	0.2	0.3

* Summarized here at seasonal scale; weightings for index defined at monthly scale



Regional environmental water time series (2010 – 2020)

Environmental water (1990 – 2020)



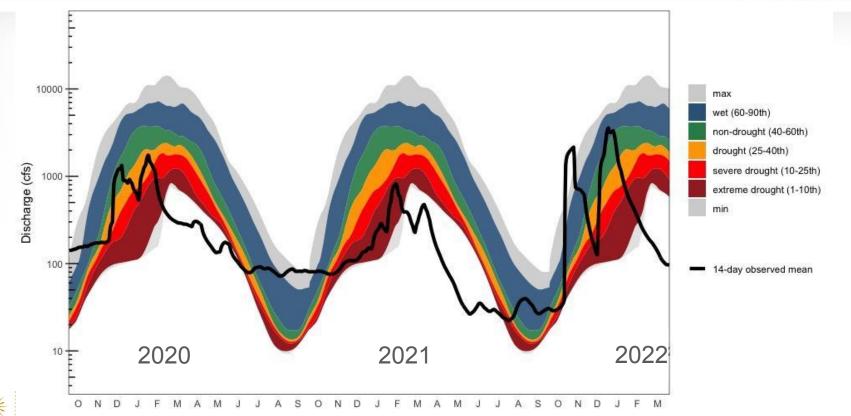
Environmental water indicator advantages and limitations

- Represents water available to ecosystem, based on commonly used hydrometeorological variables
- Accounts for antecedent climate conditions
- Does not account for influence of water management (e.g., reservoir operations and diversions)
- Spatially comprehensive

Regional environmental water drought indicator vs. streamflow drought indicator (2010 – 2021)

Ecosystem responses to drought

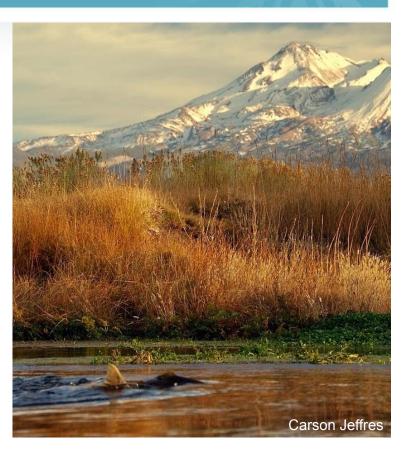
	Physiological stress		
Lower flows Wetland contraction Habitat loss		Poeruitmont failure and n	
	Higher metabolic costs	Recruitment failure and mortality	
Higher temperatures	Increased competition		Changes in assemblages
Higher contaminant conc.	Reduced food supplies	Lower fitness & survival	
Lower dissolved oxygen	Higher susceptibility to	Loss of reproductive cues	
	and prevalence of disease	Reduced (access to)	Population declines
		habitat required for reproduction	Shifts in community composition
			Range contractions
			Local and regional


extinction

Ecosystem vulnerability to drought

- Flow regime alteration
- Passage barriers
- Loss of floodplain connectivity
- Habitat degradation

Observed vs. natural flows in the Russian River

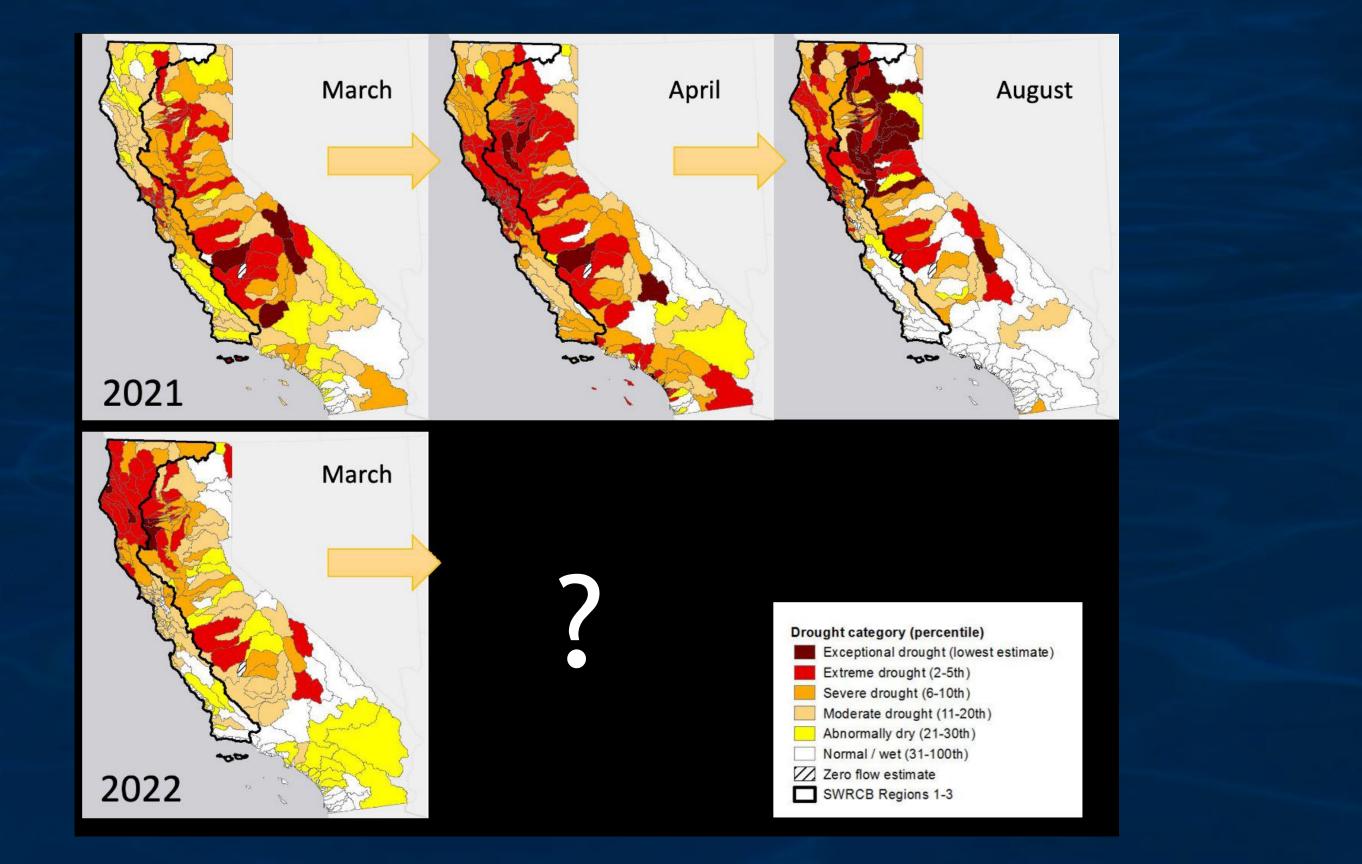

Conclusions

- Indicators provide a transparent and flexible tool to assess ecological drought risk in California
- Indicators reflect ecologically available water and account for influence of management operations and antecedent conditions
- Further analysis needed to link indicators to specific ecological drought impacts
- Indicators can be integrated in drought monitoring tool or adapted to specific decision contexts to trigger management actions

Acknowledgements

- Technical Advisory Group
- NOAA NIDIS Program
- Session coordinators and SRF!

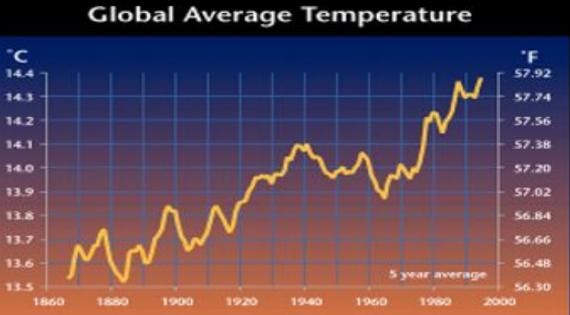
Watershed-scale Cooperative Solutions:


Projects and Approaches to Increase Drought and Climate Resilience for Streamflow, Fish Habitat and Water Supplies in Coastal Watersheds

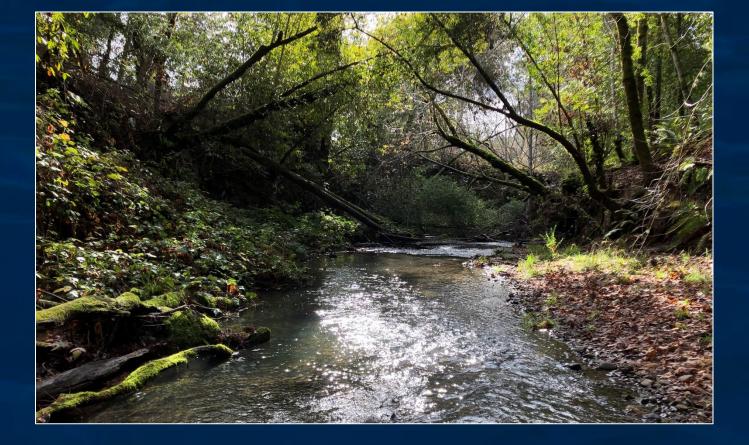
> Presentation to the Salmonid Restoration Federation Conference Santa Cruz, CA April 21, 2022

Mia van Docto **Trout Unlimited**

Monty Schmitt The Nature Conservancy



North Coast water management challenges



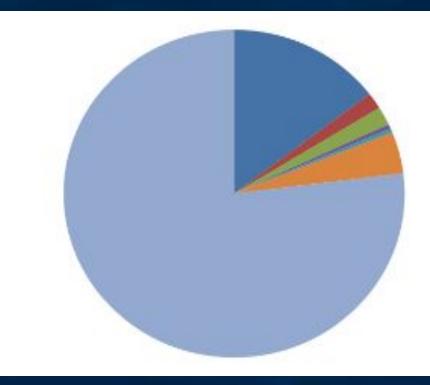
Is this the new normal?

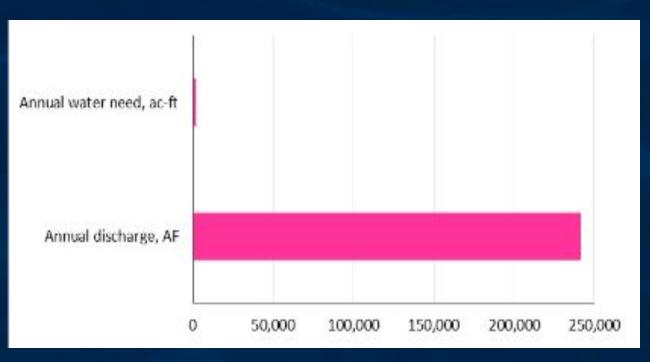
Water demand vs the timing of water availability

Navarro River Watershed

Water Use

- Annual water use = 1,700 Acre-Feet
 - Summer water use = 1,400 Acre-Feet
 - 82% of all water is use in summer


Water Supply Average annual runoff = 240,000 Acre-Feet


Supply vs Need

• Human water need = ~ 1% of runoff

The Solution

Reduce reliance on dry season diversions by using wet season water to meet human needs

Drought resilient water management & streamflow enhancement project types

Management based

Irrigation efficiency

Storage and forbearance

Coordinated diversion

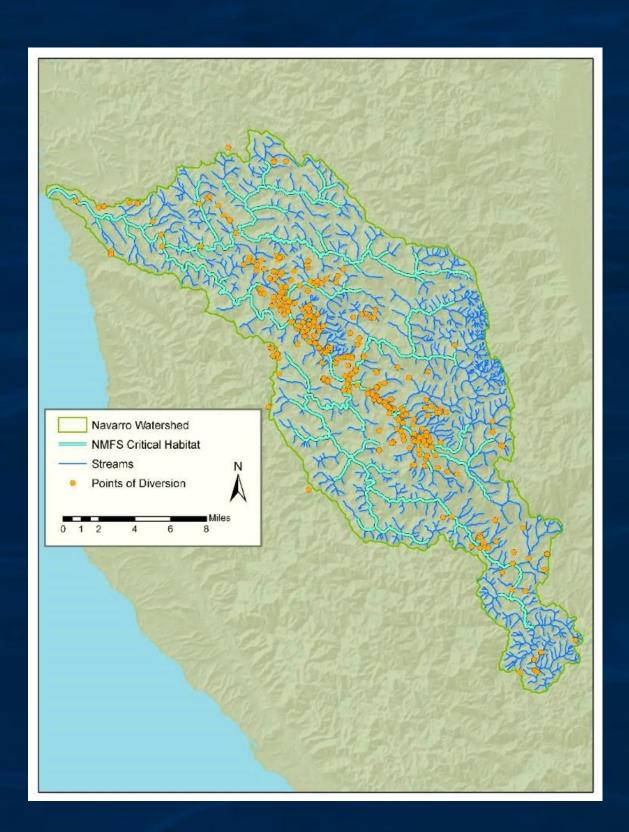
Process based

Groundwater infiltration

Floodplain reconnection

Forest management

Flow releases

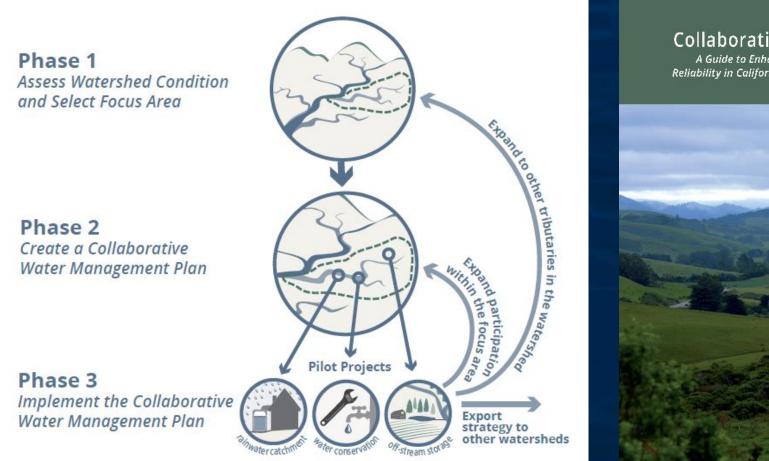


Cultural burns & land back

Photo cred: Linda Macelwee (1,2,3), Ca Sea Grant (4), Mercury News (8)

Challenges to increasing drought resilience:

- Decentralized Water Supply Systems
- Pace and Scale of Implementing Projects
 - Slow to implement
 - Incremental benefits
 - Permitting
 - Programmatic vs project based
 - Funding for projects and sustain programs


Drought resilience requires planning and cooperative solutions

We need regional / watershed scale water management plans that are:

- Community based and collaborative
- Incentivized and stakeholder-driven
- Solutions tailored to the watershed
- Strong monitoring program
- Clear management goals (i.e. flow criteria)
- Streamline permitting
- Continuous funding

Lessons learned from our work in the Navarro and Russian river watersheds

Collaborative Water Management A Guide to Enhancing Streamflow and Water Supply Reliability in California's Rural Watersheds and Communities

Alford, C., D. Stolzman, and M. Schmitt. 2021.

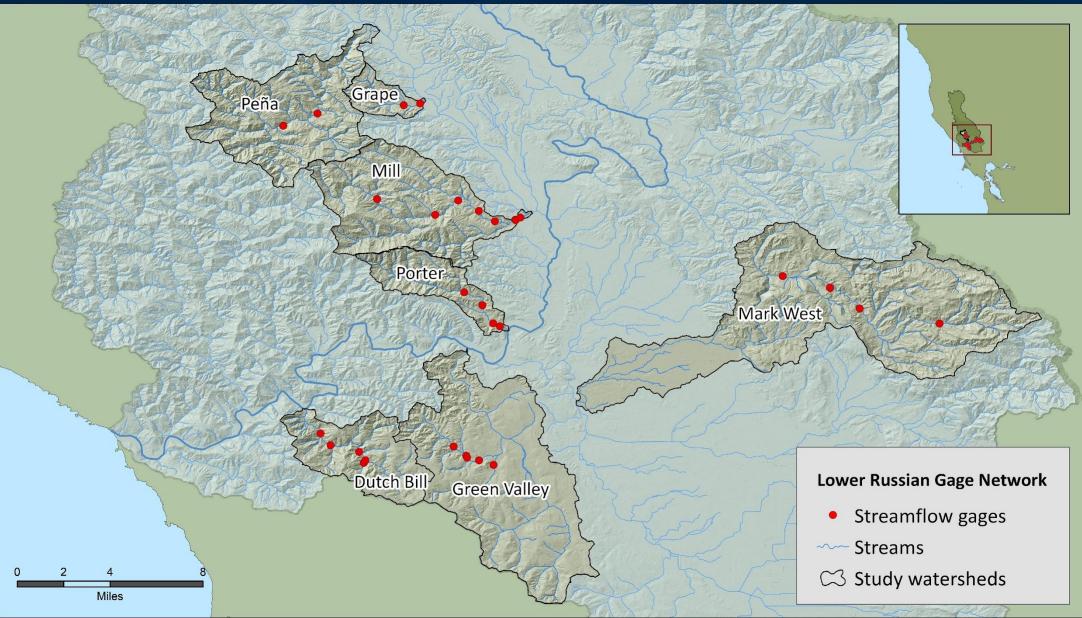
- ٠
- Planning
- Outreach •

Phase 2: Planning

plan

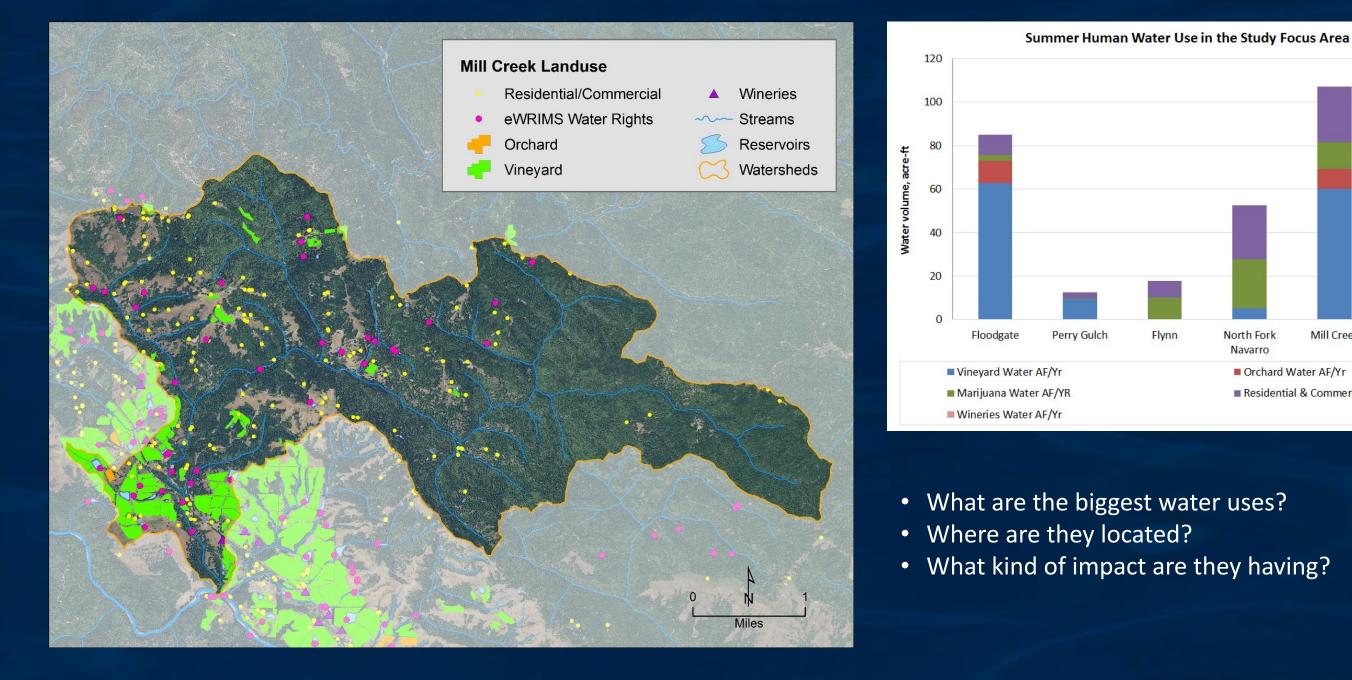
٠

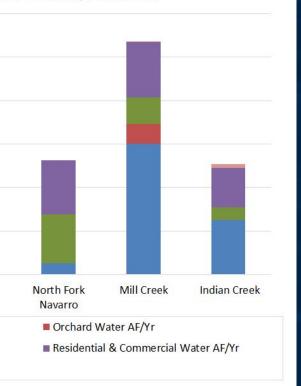
٠

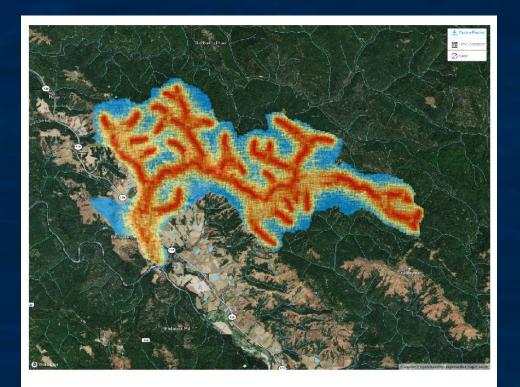

Phase 3: Implementation Implement projects **Monitor impacts** ٠ Assess additional needs ٠

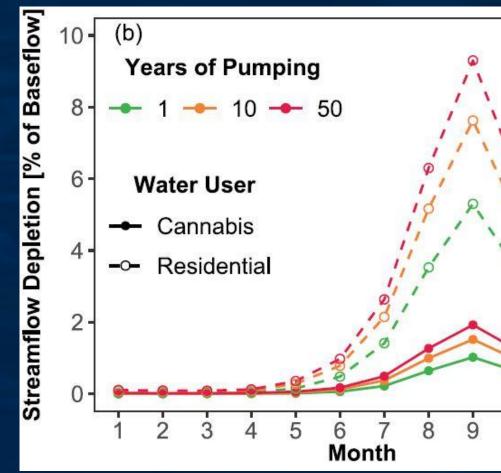
Phase 1: Selecting focus area

Science and monitoring


Develop a water management

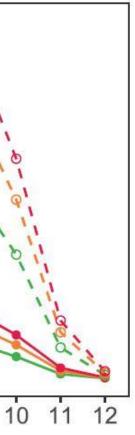

Develop projects




Mill Creek Streamflow Depletion

Scenarios for modified groundwater pumping - Report

2020.05.25


Foundry Spatial Ltd. 3947-A Quadra St. Victoria, BC V8X 1J5

• How is groundwater pumping impacting streamflow?

Introducing the **California Environmental Flows Framework**

The California Environmental Flows Framework (CEFF) is a statewide approach for determining CALIFORNI ecological flow criteria. CEFF provides a consistent and defensible approach to identifying ecological flow needs for California's rivers and streams. CEFF is being developed by the Environmental Flows Technical Workgroup (eFlows TWG), a subgroup of the California Water Quality Monitoring Council. The central goal of the eFlows TWG is improved coordination, WATE collaboration, and data sharing among agencies, nonprofits, and other parties interested in QUALITY instream flows. The eFlows TWG meets quarterly at the State Water Resources Control Board in Sacramento, California

Determining Ecological Flow Criteria

FUNCTIONAL FLOW COMPONENTS

(Yarnell et al. 2015; Yarnell et al. 2020): Elements of the natural flow regime hypothesized to support important ecosystem processes and functions. Five functional flow components have been identified for California: fall pulse flows; wet-season baseflows; wet -season peak flows: spring recession flows: and dryseason baseflows. Each functional flow component can be quantified using flow metrics that measure ecologically-relevant flow characteristics (i.e., magnitude, frequency, duration, timing, rate of change). Functional flow metrics under reference conditions have been estimated for every reach in the state using models trained on the set of reference gages and are available on the California Natural Flows Database website.

Flow Component	Flow Metric	Predicted Range at Lower Mill - Na02 and Na13 (COMID 2664783); median (10 th -90 th percentile	Predicted Range at Middle Mill - Na12 (COMID 2664737); median (10 th -90 th percentile)	Predicted Range at Upper Mill - Na11 (COMID 2664723); median (10 th –90 th percentile)	Predicted Range at Little Mill (COMID 2664675); median (10 th -90 th percentile)	Predicted Range at Meyer Gulch (COMID 2664715); median (10 th -90 th percentile)
Fall pulse flow	Fall pulse magnitude	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered
	Fall pulse timing	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered
	Fall pulse duration	likely unaltered	likely unaltered	likely unaltered	no data	no data
Wet season baseflow	Wet season baseflow (median magnitude)	unclear if altered*	unclear if altered*	likely altered (low)*	unclear if altered*	likely unaltered*
	Wet season start date	unclear if altered	likely unaltered	unclear if altered	likely unaltered	likely unaltered
	Wet season duration	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered
Peak flows	5-year flood magnitude	likely altered (low)*	likely altered (low)*	likely altered (low)*	likely altered (low)*	likely altered (low)*
	5-year flood duration	likely unaltered	likely unaltered	likely unaltered	no data	no data
	5-year flood frequency (number of 5-year floods/ year)	likely unaltered	likely unaltered	likely unaltered	no data	no data
Spring recession flows	Spring recession magnitude	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered
	Spring recession timing	unclear if altered	unclear if altered	unclear if altered	likely altered (early)	likely altered (early)
	Spring recession duration	likely unaltered	likely unaltered	likely unaltered	unclear if altered	likely unaltered
	Spring recession rate of change	likely unaltered	likely unaltered	likely unaltered	no data	no data
Dry season baseflow	Dry season (median) baseflow	likely altered (low)	likely altered (low)	likely unaltered	likely altered (low)	likely altered (low)
	Dry season start date	likely unaltered	likely unaltered	unclear if altered	likely unaltered	likely unaltered
	Dry season duration	likely unaltered	likely unaltered	likely unaltered	likely unaltered	likely unaltered

- be like?
- goals

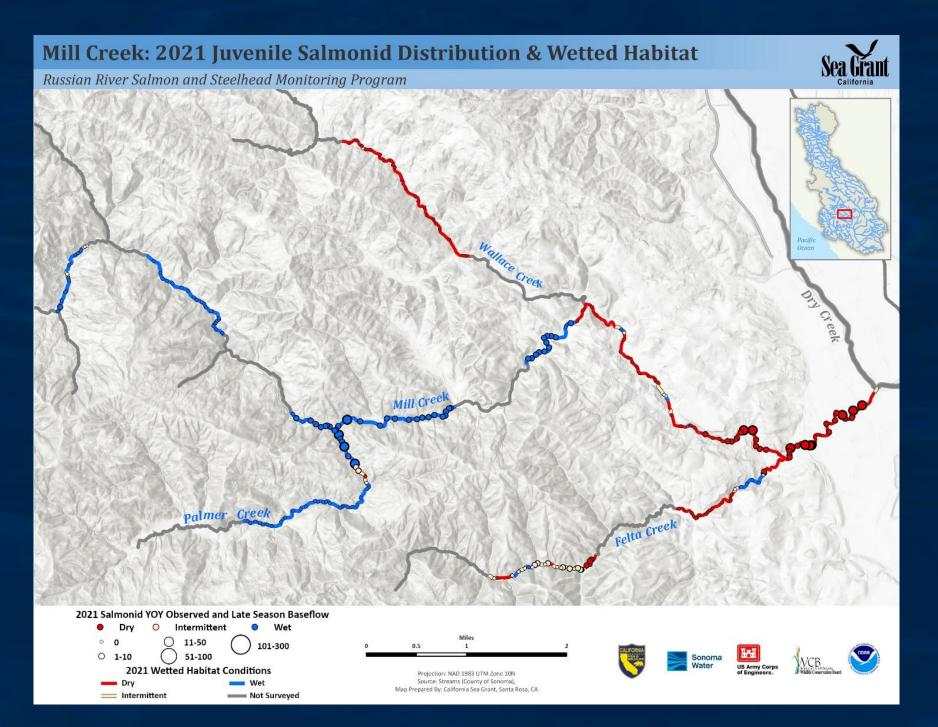
Confirms alteration

• How altered is the system?

• What should natural flows

Establish flow objective

Assessing watershed conditions


How much water do you need to keep pools connected?

Determine pool connectivity thresholds for different reaches.

Ex. Green Valley Creek pool connectivity = 0.2 cfs

Ex. Dutch Bill Creek pool connectivity = 0.05 cfs

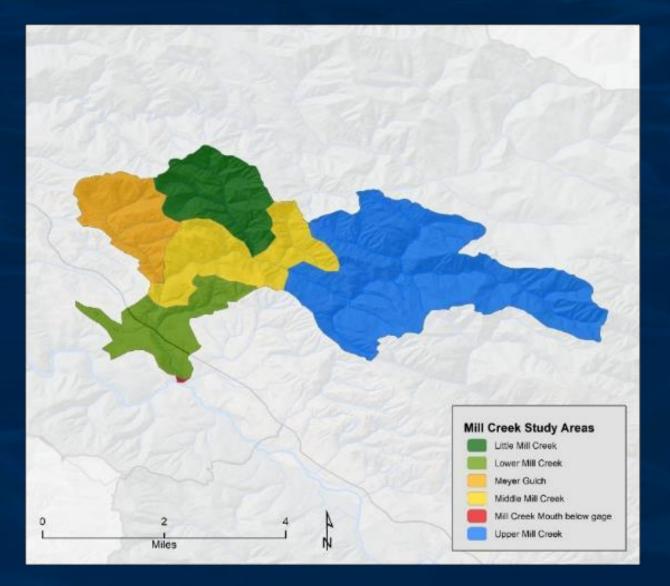
Assessing watershed conditions

Wet/dry surveys to documented wetted habitat.

Paired with fish distribution to assess vulnerability.

Credit: Ca Sea Grant

Doing the work and assessing success

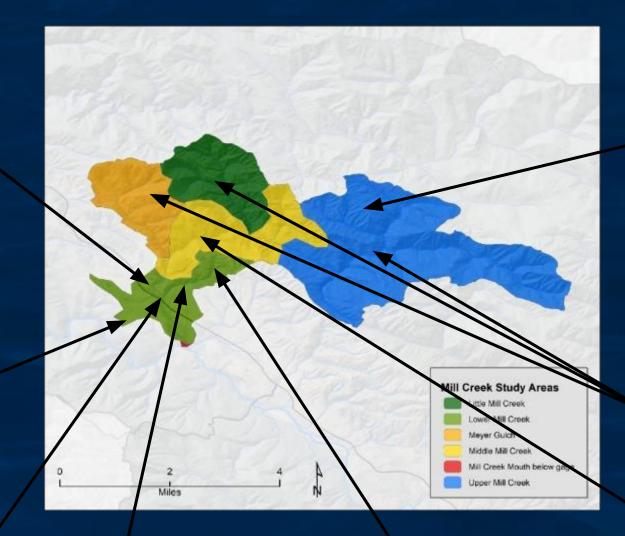

How do you get from where you are

to where you want to be?

Reach specific recommendations

Watershed conditions, water demand, and project opportunities vary throughout a watershed.

It's important to develop projects that fit the specific needs and opportunities.


Reach specific recommendations

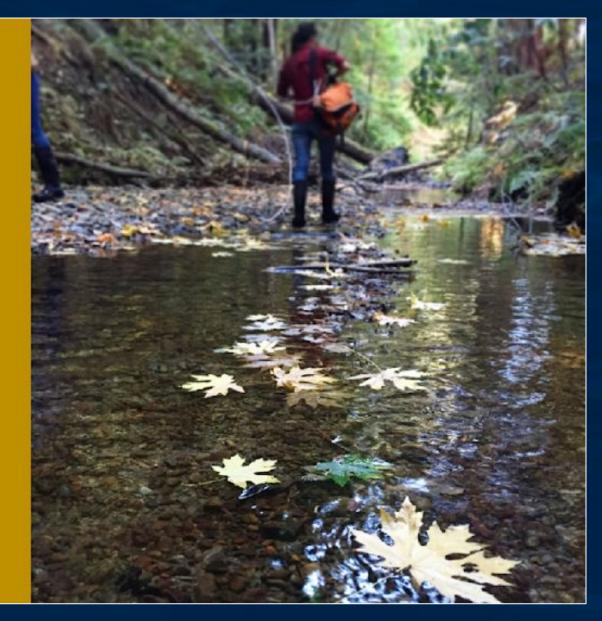
Storage and forbearance

Irrigation efficiency

Coordinated diversions

Floodplain reconnection

Forest management


Flow releases

Focused outreach and community awareness

MILL CREEK

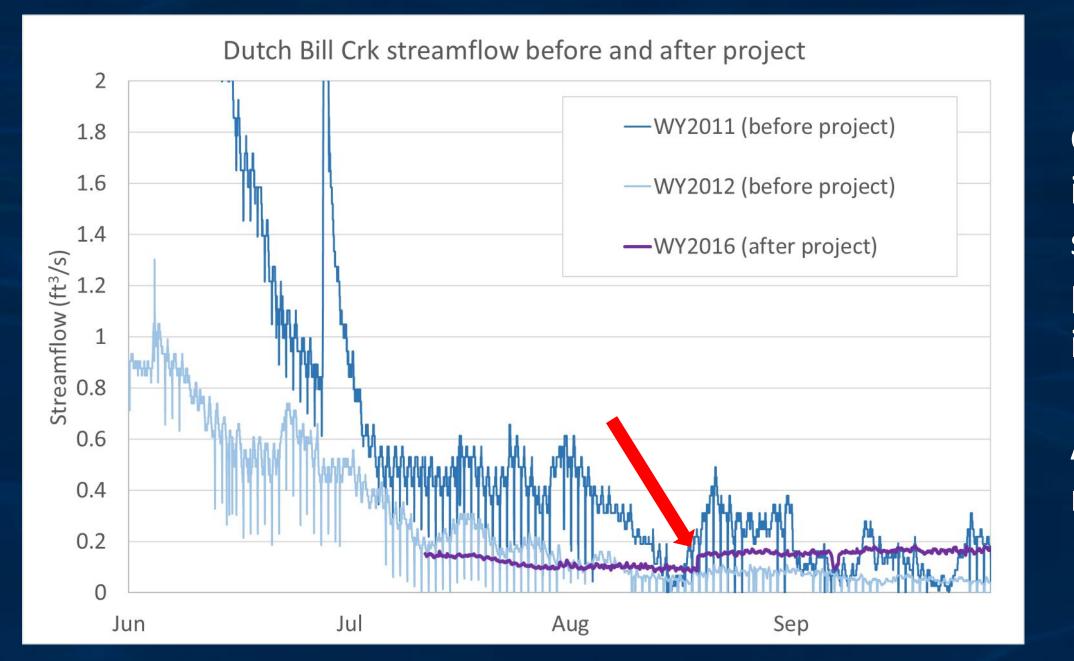
SAVE THE DATE: April 18th, 6-8 pm

Collaborative Water Management Community Meeting

How do you assess success?

Tracking success after project implementation and utilizing your monitoring data to build your program in a drying climate

0.000 cfs

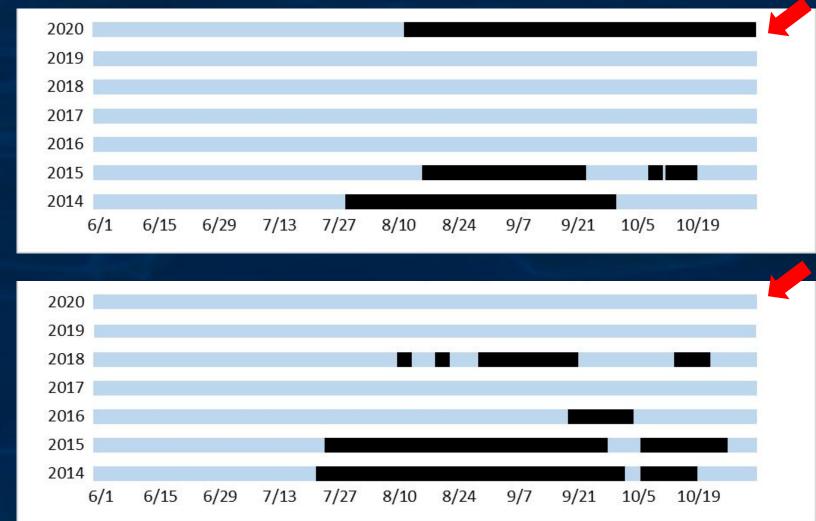

0.087 cfs

0.320 cfs

1.56 cfs

Assessing success

Lessons learned from gage network

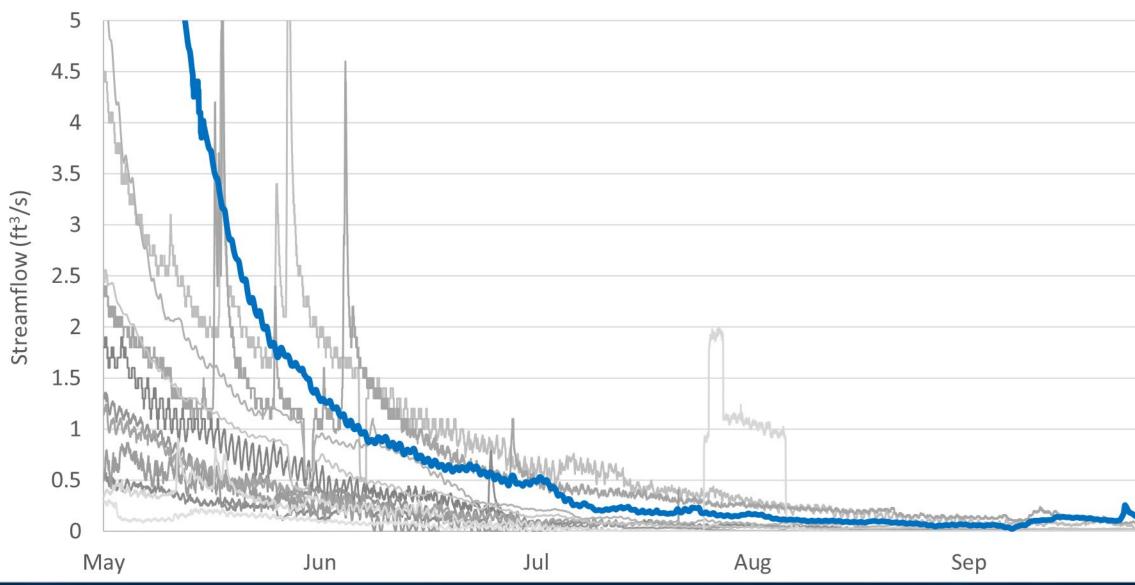


Gage data documents improvements to streamflow after project implementation

And impacts of flow release

Assessing success

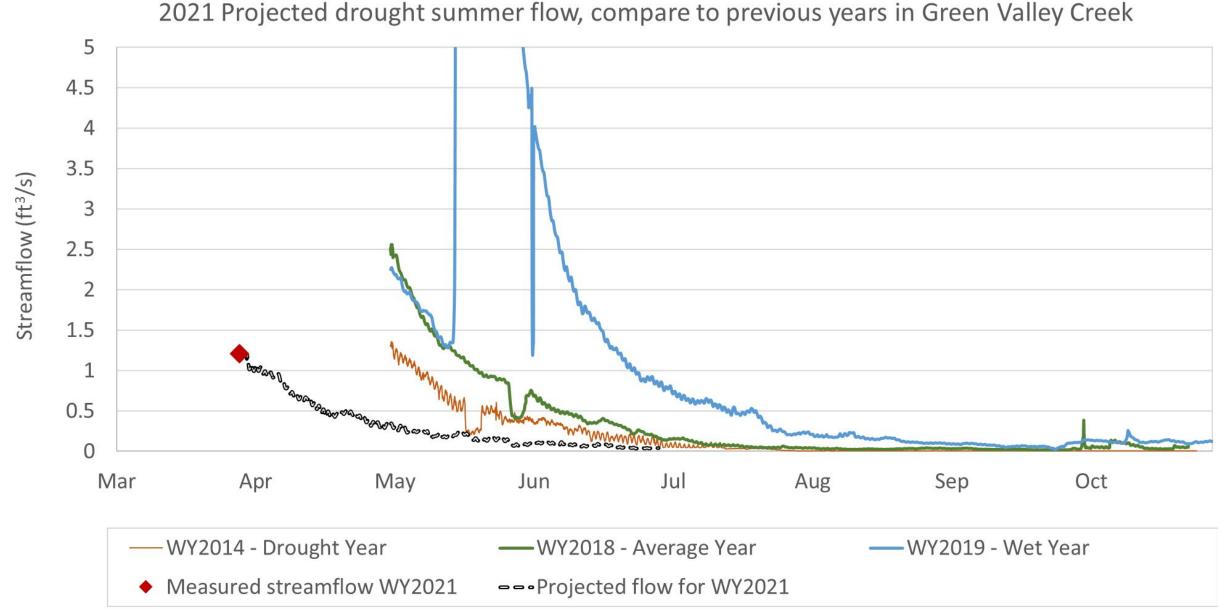
Lessons learned from gage network

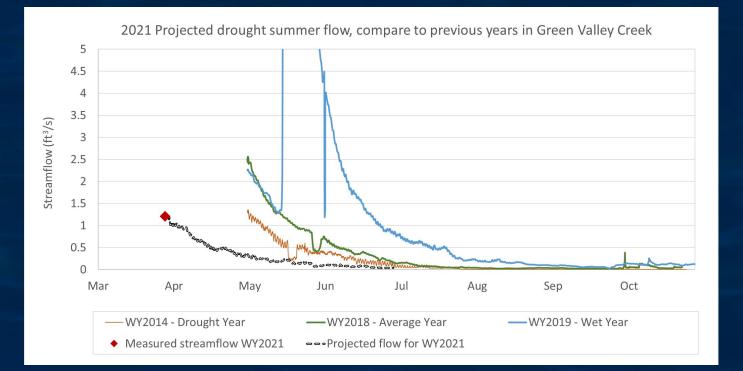

Gage data documents improvements to pool connectivity between stream reaches

Lower reach

Middle reach

Lessons learned from gage network


Landscape's unique signature


Oct

ĩ		
	multipline in	

Lessons learned from gage network Summer streamflow forecasting

Lessons learned from gage network Summer streamflow forecasting

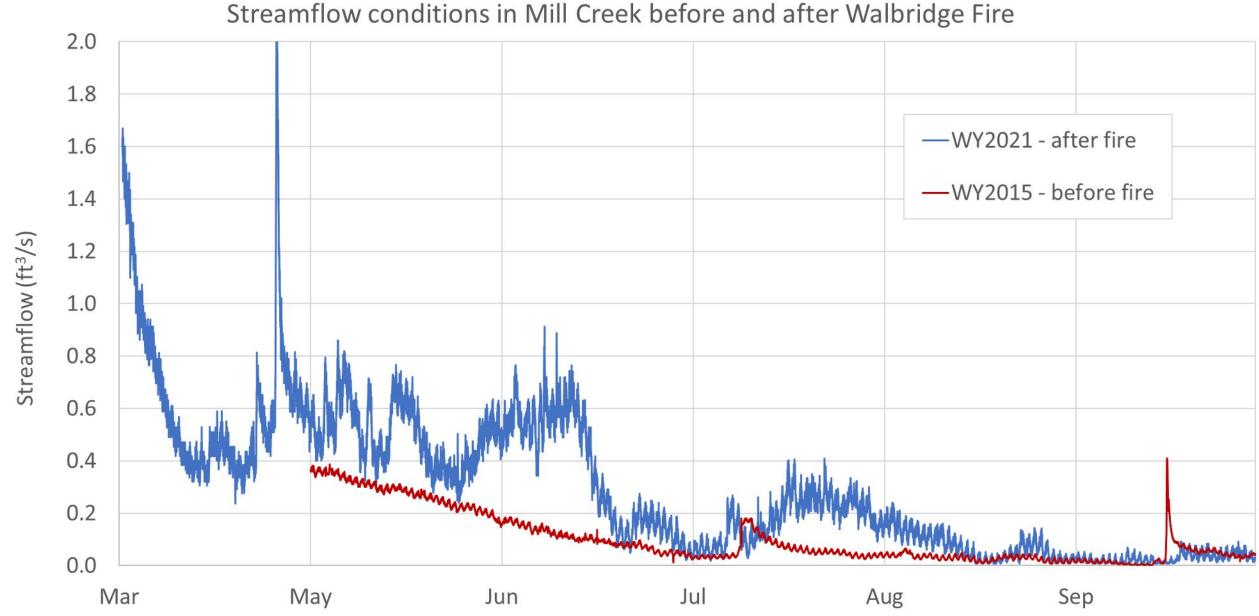



Photo credit: Jim Coleman, OAEC

Lessons learned from gage network Fire and flow

Lessons learned from gage network

Awareness of how what conditions are like – keeps the working moving

Drought resilience requires planning and cooperative solutions

- Community based, incentivized and stakeholder-driven
- Solutions tailored to the watershed
- Strong monitoring program
- Clear management goals (i.e. flow criteria)
- Streamline permitting
- Continuous funding
- AB 2451 (Wood) drought preparedness
 - Dedicated drought division in the Water Board
 - Generates drought management plans in coastal watersheds

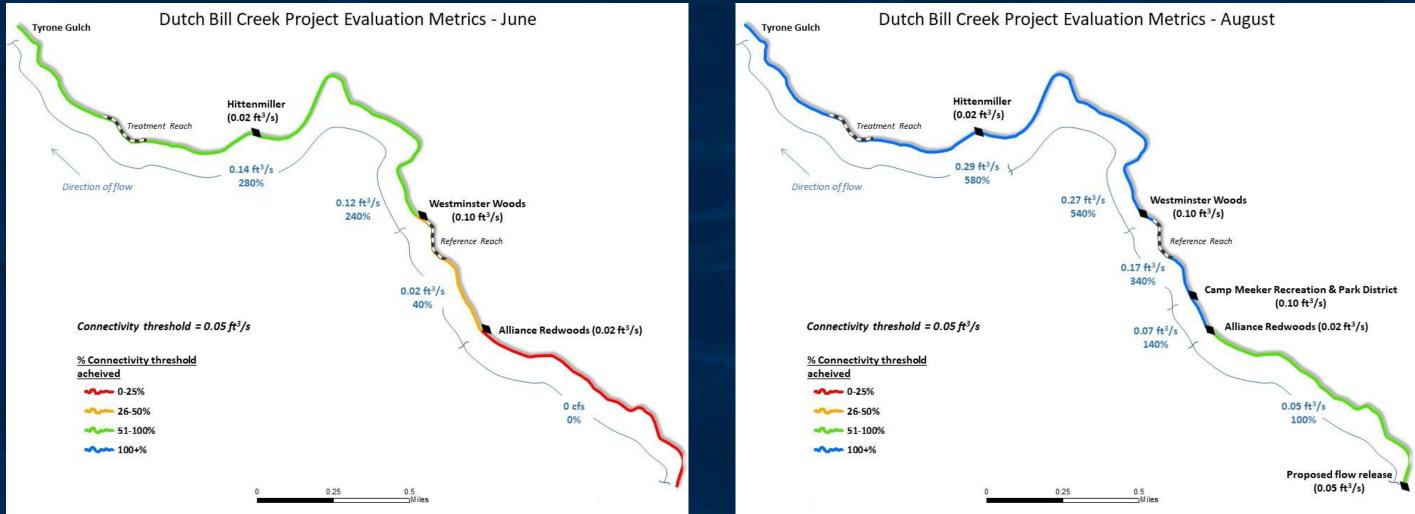
Thank you!

- California Department of Fish and Wildlife
- California Department of Water Resources
- California Sea Grant
- California State Coastal Conservancy
- California State Parks
- California Trout
- Camp Meeker Recreation and Park District
- Gallo Glass
- Gold Ridge Resource Conservation District
- Mendocino Resource Conservation District
- The Nature Conservancy •
- **NOAA Restoration Center**
- National Fish and Wildlife Foundation •
- National Marine Fisheries Service •
- North Coast Regional Water Quality Control Board •
- Occidental Arts and Ecology Center •
- Prunuske Chathaviilac.van Docto •
- •
- San Mateo Resource Conservation District Salmonid Restoration Federation @tu.org
- Sanctuary Forest
- Santa Cruz Resource Conservation District
- Conomo County Motor Agonay

Monty Schmitt Monty.Schmitt@tnc.org

SWRCB Curtailment Orders

 Local Cooperative Solutions

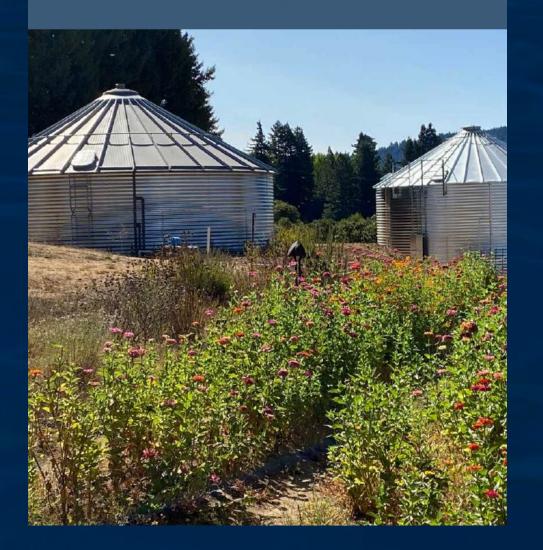

Sustainable Groundwater Management Act

AB 2451 (Wood) - Drought Preparedness

ent Act

Assessing success

Lessons learned from gage network


Connectivity thresholds provides metric for assessing project success

Credit: Coho Partnership

Sustaining the program

Key lessons learned through our partnership work

Mill Creek Collaborative Water Management Plan

- Work with partners
- Solid monitoring program
- Develop drought/water management plan
- Develop projects to meet reach needs
- Continuous funding
- Evolve project types

Drought Resiliency in the Klamath Basin: The Yurok Tribe's Strategies and Approach

Securing the Future of Salmon

The Yurok Culture and Constitution Define its Approach to Restoration

"We also have practiced our stewardship of the land in the

prairies and forests through *controlled burns* that improve

wildlife habitat and enhance the health and growth of the tan

oak acorns, hazelnuts, pepperwood nuts, berries, grasses and

bushes, all of which are used and provide materials for

baskets, fabrics, and utensils.

Drought Impacts to Tribe

- Drought stresses aquatic and terrestrial ecosystems
- Profound impacts to fisheries
- Domestic water supply issues for upper reservation citizens
- FIRE

Drought Resiliency

- Because the Tribe is focused on natural systems and people as part of that system, drought monitoring extends beyond simple monitoring
- The best way to make aquatic systems resilient to drought is to have intact ecosystems, high quality habitat and <u>biodiversity</u>.
- This is rooted in TEK, which emphasizes each species' role in contributing to overall ecosystem health
- Ecosystem health translates directly to human health. Photo art credit: Louisa McCovey

YTED Climate Change Adaptation Plan (2017)

He-we-chek' – I live, I am healthy, I get well, I survive

The health of the Yurok people depends on the health of the species, which depends on the health of the Klamath River and the health of the entire ecosystem...

It isn't possible to talk about the river without talking about the fish, without talking about the trees, flowers and plants and the animals; deer and elk, salamanders and birds.

They work together, collectively. It is important to keep this holistic Yurok worldview

YTED Climate Change Adaptation Plan (2017)

He-we-chek' – I live, I am healthy, I get well, I survive

The health of the Yurok people depends on the health of the species, which depends on the health of the Klamath River and the health of the entire ecosystem...

It isn't possible to talk about the river without talking about the fish, without talking about the trees, flowers and plants and the animals; deer and elk, salamanders and birds.

They work together, collectively. It is important to keep this holistic Yurck worldview

- Decades long dataset: 2002-2022
- BMIs collected within vicinity to YTED stream gauging station
- YTED BMI taxa and flow duration statistics represent long-term monitoring efforts in lower Klamath River tributaries
- Long-term datasets collected during periods of drought and extreme flooding

ing	5										SIL	यास्य	
										1400			THE
										TE			
													17
													S.
										Ŕ	WIL.	ALL	
							2002						
						2003	A B C 1 Phylose Class Order Family 4 Rusphenistr Tuchularia 5 Saventa Boolda Napasement Tucas	5 B P Q Hoo	H I J arrep Upper Turwar 5/22/2015 notes 5/12/2015 notes 1 lan	a paytons	2 Palycelia 5 Palycelia	K B T U Tectel Hainstern Johnsons 6/5/2015 notes 5/13/2015 notes 1 lanvar fr 2 Autyorite	V Branc Creats 735/2015 Saft
						200J	Provide Down a United Statement Provide Sta	A sense produces of the pro- ritide mayber BCP codes 2 as the product of the pro- social pro- pro- social pro- social pro-	1 15 1 3 К L	M N O	1	37 4 5 T U	v
						Phythem Class Order Phythemyth Turbelaria Nenentee Propie Notuca Briebka Gastropoda Scribeconch Hyprogastrop	Family Genus/species TV tetraterma/hostona Sphartidae / Spikhere B Neurocuridae Aga tydrobildae B Polstinicale B Part	NcCarvey Upp \$726 5 \$P 5 \$CT 1 \$SC 15 \$SC 1 \$SC 1	3 K L Turley (12/2015 notes 6/26/2015 r 1 larval fish 5 f	M N O notes 6/1/2015 notes holycels 2 Advoels	P Q R NF Tectah S/S/2015 notes 6/5/2 1 Abivelis 2 1	Jahnstern Johnsons 1015 notes 5/11/2015 notes 1 Janval figi 2 Polycelis 17 4	Blue Creek 7/6/2015 sh
• • • •	~		4 1 2 3 Ph 4 Pla	A B ylum Class Order tyhelmint/Turbellaria	c D r Family		G H I McGarvey 5/22/2015 notes	J K	L M N ley SF Tect 6/26/2015 notes 6/1, 5 Polycelis	ah NF Tectah /2015 notes S/S/2015	Q R Tectah Mainste 6/5/2015 n Polycelis	S T U m Johnsons otes 5/11/2015 notes 1 larval fi 2 Polycetis	V Blue Creek 7/6/201 fish
201	8		5 Net 6 No 7 8 9 10 11	mertea Enopla Hoplo Ilusca Bivalvia Vener Gastropoda Sorbe Hypso Bason	nemerb Tetrast oida Sphaer oconch Pleuror gastror Hydrob matop Physidi Planori	Initiae Prostome Itidae Pristikum eriidae Pristinicole Physa olde Gyravius	4 P 8 P 8 CF 1 7 SC 15 8 SC 8 SC 1 8 SC 1 8 SC 8 8 SC			13 2		17 4	
A A 1 2 3 Phylum C	B Class C	C Drder F	D amily (E Senus/species	F G	H I McGarvey 5/22/2015 notes	J K Upper Turwar 5/12/2015 notes 1 larval fish	L M Tulley 6/26/2015 notes 5 Polycelis	N O SF Tectah 6/1/2015 notes 2 Polycelis	P Q NF Tectah 5/5/2015 notes 1 Polycelis	R S Tectah Mainstem 6/5/2015 notes	T U Johnsons 5/11/2015 notes 1 larval fi 2 Polycelis	V Blue Cree 7/6/2
	Aastropoda S	loplonemerti T 'eneroida S iorbeoconch P lypsogastror H	phaeriidae / leuroceridae J lydrobiidae	Pisidium luga Pristinicola	4 P 8 P 8 CF 7 SC 8 SC 8 SC 8 SC 8 SC 8 SC	1 15 1		o ronječno	13	2		17	
9 9 10 12 13 Annelida P 14 O	olychaeta C	asommatop Pi Pi analipalpata S aubclass: Aca	lanorbidae (L abellidae /	Physa Syraulus /orticifex Manayunkia speciosa	6 SC	10	4	8	18 many large	ir 6	26	34	
LS Arthropoda A 16 17 18 19 20	rachnida S			Cookacarus Jtaxatax Arrenurus Albaxona? Iavalbia?	5 C G 5 P P 5 P P 8 P 8 P 8 P				1				
21 22 23 24 25 26		н	nisitsiellida (rrenuridae / turidae / turidae J lydrodromid / lydrovolziida / lydrovolziida / lydrophantid / lygrobatidae /	Aydrodroma Aydrovolzia Protzia Vandesla Atractides Avarobates	5 P 5 P 5 P 5 P 8 P 8 P	3	1	1	1		2	2	
27 28 29 30 31		U U M	ebertiidae L imnesiidae L imnocharidaL lideopsidae J	Mesobates ebertia Jimnesia Jimnochares Mideopsis	8 P 5 P 5 P 5 P	2	5	2	2	2	3	3	
33 34 35 36 37			perchontida 5 sygothromb 5 orrenticolid; 7	Stygomomonia Clathrosperchon Sperchon Sperchonopsis Stygothrombium Festudacarus Forrenticola	5 P 8 P 8 P 5 P 5 P	13	6	7 1 S. stellata	10	11	28	1	
89 N 10 12	lalacostraca A	mphipoda C G sopoda A Aecapoda A		Stygobromus Ramellogammarus Pacifasticus	4 CG 4 CG 6 CG 8 CG	13	1	1 1 damaged	4		20	0	
-3 14 C 15 I 16		phemeropte A	meletidae A aetidae A	Acentrella Saetis Diphetor hageni	8 CG 0 CG 4 CG 5 CG	4	20	2 51 3 spp.?	6 30	16 45	6 34	22	
13 Arthropode / 14 Arthropode / 17 1 / 17 1 / 17 1 / 17 1 / 17 1 / 18 1 / 13 1 / 13 1 / 13 1 / 13 1 / 14 1 / 15 1 / 14 1 1 15 1 1 14 1 1 15 1 1 14 1 1 15 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10 1 1 10<		E	phemerenia A C L	attenella Caudatella Drunella Ephemerella	5 P 5 P 8 P 5 P 5 P 5 P 5 P 5 P 5 CG G 6 CG G 7 CG C 7 CG C 6 CG G 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C	1	1 7 2 spp. 4 2 spp.	1 13 2	18	2 17 2 spp.	3	1 1 4 2 spp.	
54 55 56 57 58		н	1	Matriella teresa Serratella	2 CG 2 CG 7 CG 2 SC 4 SC	10	1 3 34		6 4	1 1 1 1	2	1 6	
9 10 12 53		U	E I F eptohyphida A	Timpanoga hecuba Cinyama Cinyamula Scayonurus Speorus Tonodes Nhithrogena Ssioplax Homoleptohyphes Tricorythodes Paraleptophlebia	3 SC 0 SC 3 SC 0 SC 4 CG	11 2 3	5	2	3	5	3	3 2	
i4 i5 56	p	lecoptera C	/ ptophlebiic / apniidae hloroperlidae	Iomoleptohyphes Fricorythodes Paraleptophlebia	4 CG 4 CG 4 CG 1 SH 1 P	101 8 early, inc	3 istinct, <i>Sweltsa</i> 3 early, indis	4 1 tinct. Suwallia for metrics	58	35 1 distinct	34 1	22	

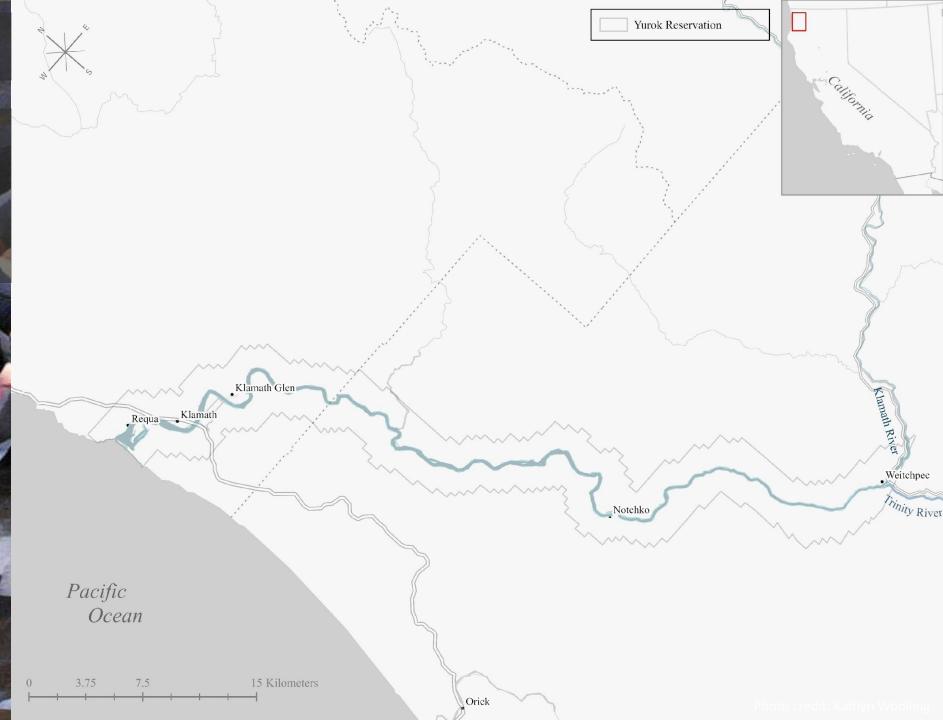
11

- Decades long dataset: 2002-2022
- BMIs collected within vicinity to YTED stream gauging station
- YTED BMI taxa and flow duration statistics represent long-term monitoring efforts in lower Klamath River tributaries
- Long-term datasets collected during periods of drought and extreme flooding
- For this analysis, a period 2007-2018 is used

								-20	02		20	07				
								A Burnetide Porychaet	C Order Fam Hopkineerseth Tetts Verwende Soh Sorbescench Reu Hossogalithic Hild Basommatop Phys Kan a Carnelizeloats Solo	D B By Gense/spocies werking Positiona werking Positiona Positional Posit	P 0 M P 0 M 4 P 8 P 8 C 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S	CGerry Upper Timer S221/2015.notes Upper Timer 11 1 1 1	n s Aulycesia	o p q Tectalo US notes S (2003 notes K 20 Princete 1 intercent 33 2 1 1 2	Noveleter Scherologie Doctories Scherologie 2003 roles Scherologie 1 lover fait 2 rolycela 17 4	V Bige Creek 7/5/2015
								D Genus/sp Family Genus/sp Tetrasterrma /rostorna Sphaeridae /histhorr Plearocaridae Apga Hydrobidae /hyga Physidae /hyga	and an The	6 H NoGarvey 5/22/20 8 P 8 CP 7 SC 8 SC 8 SC 8 SC 8 SC	I Up 115 notes 1 15 1	aper Turver Tulley 5/12/2015 notes 6/26/2015 notes 3 larvel fish 5 Polyc	SF Tectah 6/1/2015 notes	P Q R NF Tectah Heimi 5/5/2015 notes 6/5/2015 1 Aviytelis 2 1	S T U Ishmona I S/11/2015 nobes I S/11/2015 nobes I 1/mol fish 2 Morends 17 4	V Blue Creek 7/6/2015 1
20	18		4	A B Phylum Class Platyhelminitt Turbellaria Nemertee Encole Bivalvia Gastropoda	Veneroida Sorbeocono Hypsogastre	Sphaer h Pleuroc of Hydrob	Genus/species TV emmai Prostoma Ildae Pisidium eridae Juga Ildae	G H McGarwey 5/22 FFG 4 P 8 CF 7 SC 8 SC 8 SC 8 SC 8 SC 8 SC	1 /2015 notes 1 15 1	J Upper Turwar S/12/2015	K Ti notes 1 larval fish			Tectah Mainstern	S T U Johnsons S/11/2015 notes 1 Janval fish 2 Polycells 17 4	V Blue Cree 7/6/21
A A	В	с	D	E	F	G	H I McGarvey 5/22/2015 notes	J Upper Turwar	К	L Tulley 6/26/2015	м	N O SF Tectah N 6/1/2015 notes	P Q IF Tectah	R S Tectah Mainstem 6/5/2015 notes	T U Johnsons	V Blue Cr
3 Phylum 4 Platyhelmint	Class	Order	Family	Genus/species	τv	FFG 4 P	3/22/2015 Hotes	5/12/2015	1 larval fish		Polycells	2 Polycelis	5/5/2015 notes 1 Polycelis	a/ 3/ 2013 Hotes	5/11/2015 notes 1 larval fish 2 Polycelis	7/6/
5 Nemertea 6 Mollusca	Enopla Bivalvia	Hoplonemen	t Tetrastemm Sphaeriidae	a Prostoma Pisidium		8 P 8 CF	1			5	, orycens	2 Polycens	1 Polycells		2 Polycells	
7		Sorbeoconch Hypsogastro	n Pleurocerida	e Juga		7 SC 8 SC	15					13	2		17	
9 10		Basommatop		Pristinicola Physa		8 SC 8 SC	1						1		4	
11		Basommatop	Planorbidae	Gyraulus		8 SC										
12 13 Annelida 14	Polychaeta Oligochaeta	Canalipalpat	a Sabellidae	Vorticifex Manayunkia specios	58	6 SC 5 CF 5 CG	10					18 many large in		26	34	
15 Arthropoda	Arachnida	Subclass: A	cari	a Cookacarus		5 P 5 P	10			0		10 many large in	6	28	34	
16 17				Utaxatax		5 P						1				
17 18 19 20 21 22 23 24 25 26 27 28 29 30			Arrenuridae Aturidae Aturidae	Albaxona? Javalbia?		5 P 5 P										
20			Hydrodromie	d Hydrodroma Hydrovolzia		5 P 5 P										
22			Hydrovoiziid	d Protzia		8 P		1								
25			Hygrobatida	Wandesia e Atractides		5 P 8 P 8 P	3					1		1	2	
26			Lebertiidae	Hygrobates Mesobates		8 P 8 P 8 P				1		1			3	
28			Limnesiidae	Limnesia		5 P	2	5		2		2	2	3	3	
30			Mideopsidae	a Limnochares Mideopsis		5 P 5 P						1		5		
31 32 33 34 35 36 37			Rhynchohyd	Stygomomonia r Clathrosperchon		5 P 5 P					1 S. stellata					
35			Sperchontid	a Sperchon Sperchonopsis o Stygothrombium		8 P 8 P 5 P		6		7	1 S. steilata				1	
37			Torrenticolic	i: Testudacarus		5 P 5 P 5 P	13	33		69		10		28		
39	Malacostraca	Amphipoda	Crangen	Torrenticola d Stvaobromus		4 CG	13	33		69		10	11	28	0	
38 39 40 41 42 43 44 44 45 44 45 55 52 53 53 55 54 55 55 55 55 55 55 56 55 58 59 60		Isopoda	Gammaridae	Ramellogammarus		6 CG 8 CG				-	damaged	4		2		
43	Ostracoda	Decapoda	Astacidae	Pacifasticus		6 OM 8 CG		1			Gamaged					
45	Insecta	Ephemeropte	e Ameletidae Baetidae	Ameletus Acentrella		0 CG	4	20		2		6	16	6		
47			overidae	Baetis Centroptilum		5 CG 2 CG	14	128		51	3 spp.?	30	45	34	22	
49			Ephemerelli	Diphetor hageni		5 CG 2 CG	1	1		13			2	3	1	
51			-process Clin	Caudatella Drunella		1 CG	3	,	2 spp.	,		18	17 2 spp.	37	1	
53				Ephemerella Matriella teresa		0 CG 1 CG 2 CG			2 spp.	2		10	ar a app.		4 2 spp.	
55				Serratella Timpanoga hecuba		2 CG	10	2					1	2		
57			Heptageniid	a Cinygma Cinygmula		2 SC 4 SC 3 SC	10	34				6	1	4	1	
59				Ecdyonurus Epeorus		3 SC 0 SC	2	54		2		3	5	3	3	
61 62				Ironodes Rhithrogena		3 SC 0 SC						-	ĭ	1	2	
63 64			Leptohyphid	a Asioplax Homoleptohyphes		4 CG 4 CG										
63 64 65 66 67			Lentophlebii	Tricorythodes c Paraleptophlebia		4 CG 4 CG	101	3		4		58	35	34	22	
		Plecoptera	Capniidae	a. a. anoproprine old		1 SH	101	3		1		30		1	66	

Field Methods

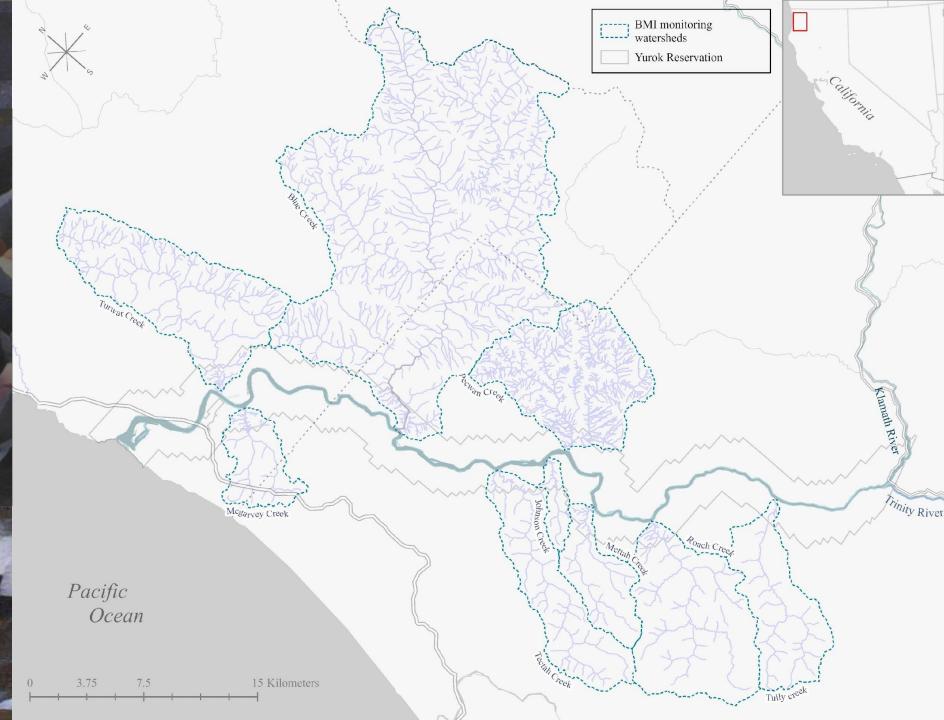
- Standard rapid bioassessment protocols
- 100-200m, multiple transect study reaches
- BMIs collected in multiple habitats with D-frame nets
- Samples preserved in field with 95% ethanol


Lab Methods

- Jon Lee Taxonomic Services, processed and ID taxa to genus/species
- Fixed count ~500 individuals after removing large and rare
- Northern California Index of Biological Integrity (NORCAL-IBI) and other water quality metrics

Additional Monitoring

 Lower 44 miles of Klamath River within and adjacent to Yurok Tribe Reservation

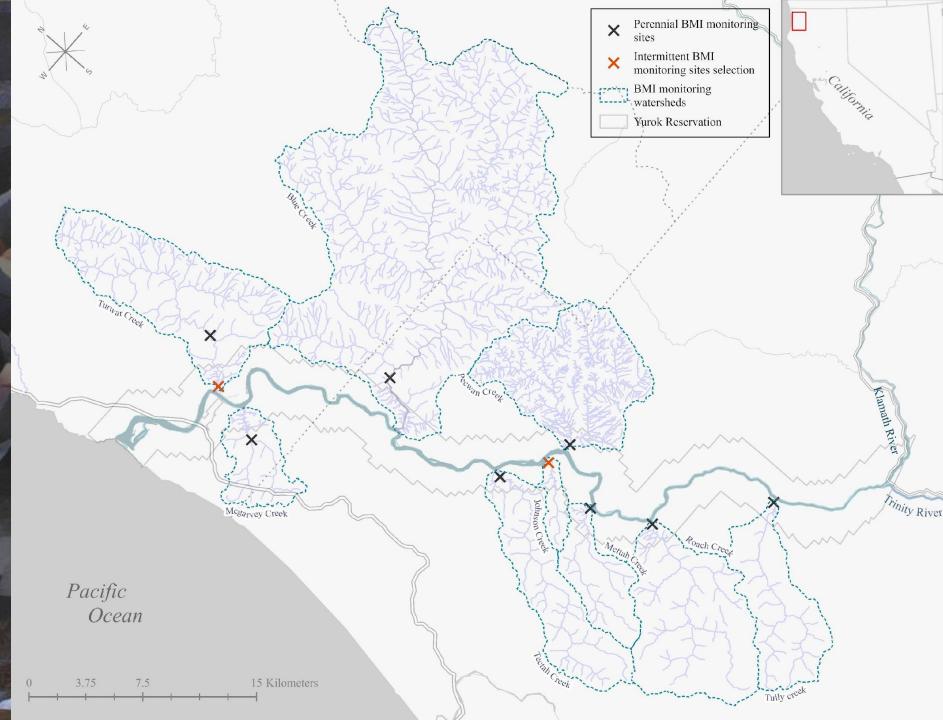


Additional Monitoring

 Lower 44 miles of Klamath River within and adjacent to Yurok Tribe Reservation

YTED Streamflow Gauging stations

 Upper and Lower Turwar Creek, Blue Creek, McGarvey Creek, Pecwan Creek

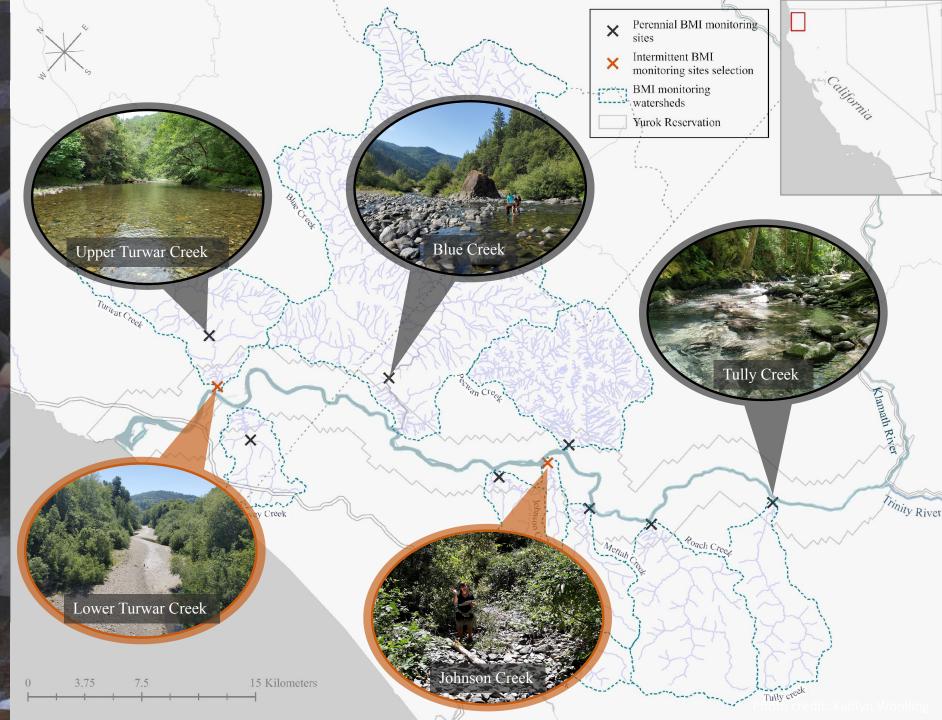


Additional Monitoring

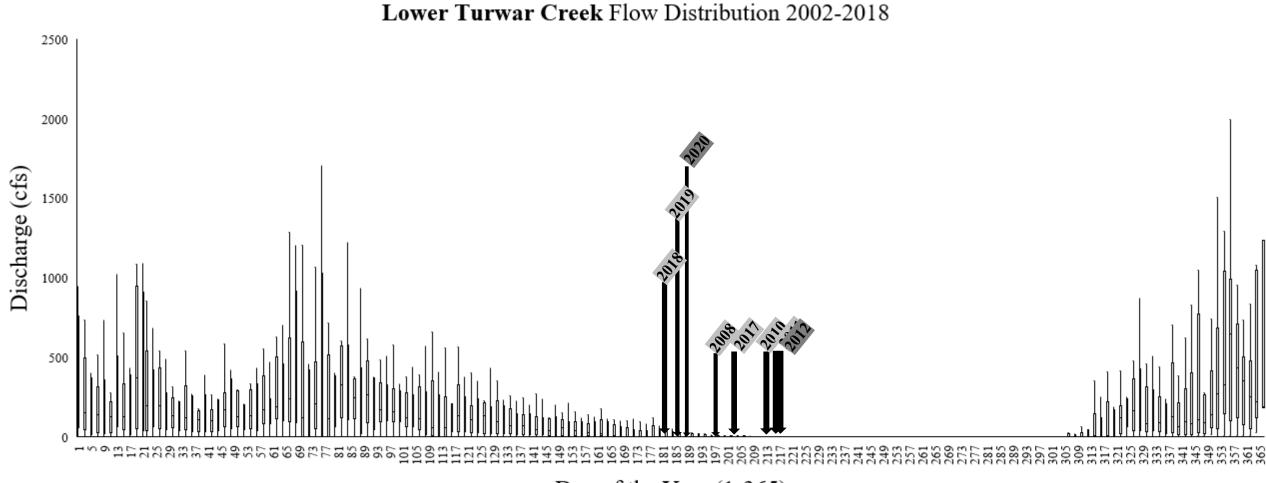
• Lower 44 miles of Klamath River within and adjacent to Yurok Tribe Reservation

YTED Streamflow Gauging stations

- Upper and Lower Turwar Creek, Blue Creek, McGarvey Creek, Pecwan Creek
- Represent both perennial and intermittent sections of stream

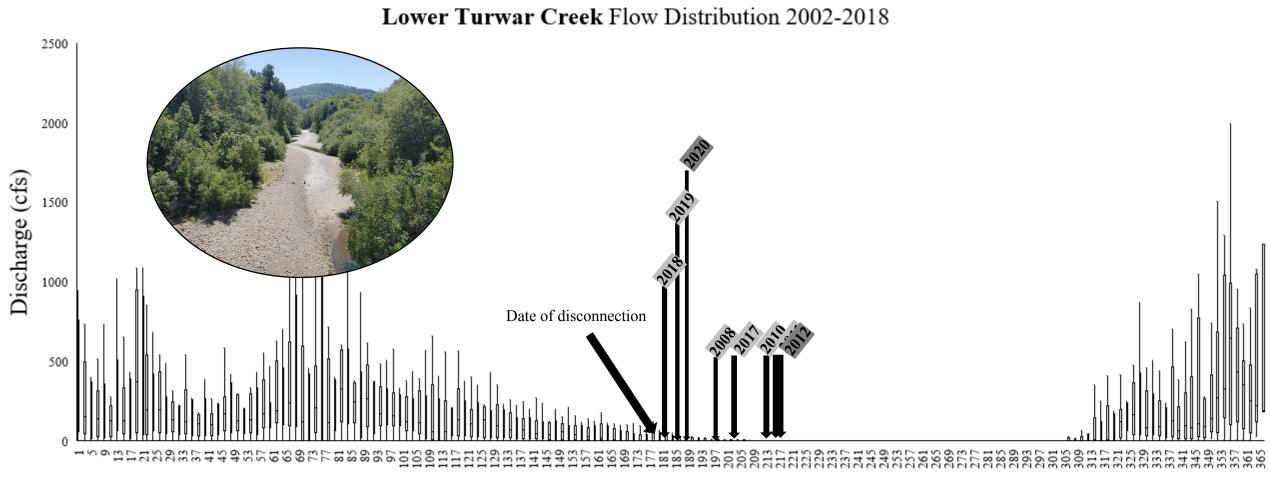


Additional Monitoring

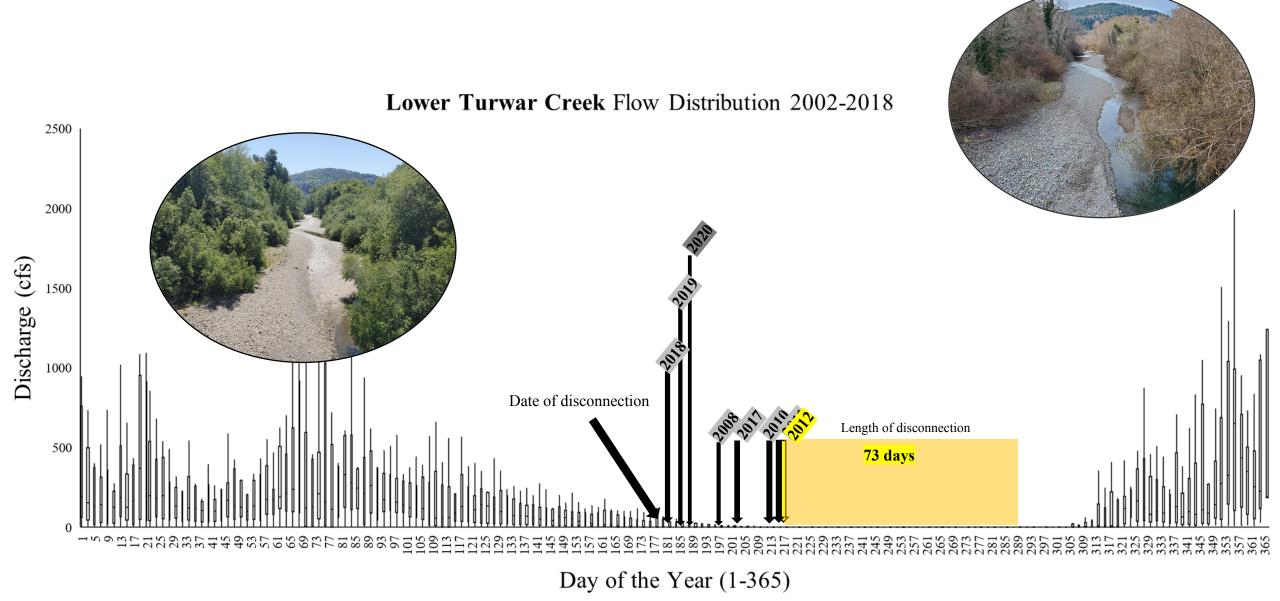

 Lower 44 miles of Klamath River within and adjacent to Yurok Tribe Reservation

YTED Streamflow Gauging stations

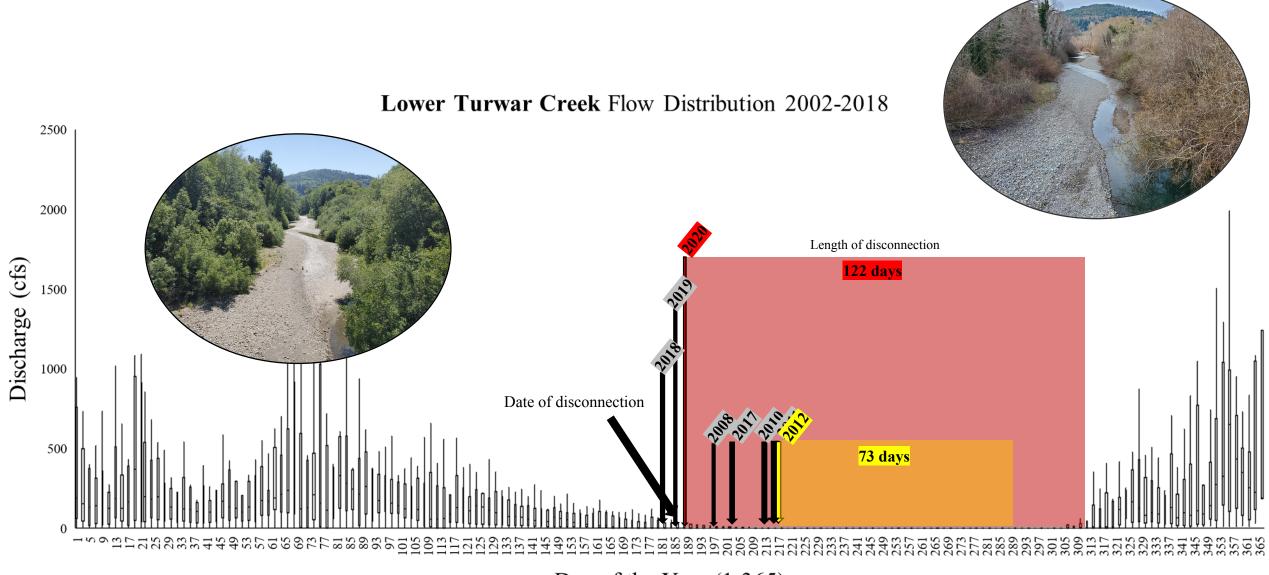
- Upper and Lower Turwar Creek, Blue Creek, McGarvey Creek, Pecwan Creek
- Represent both perennial and intermittent sections of stream



and adjacent to Yurok reservation

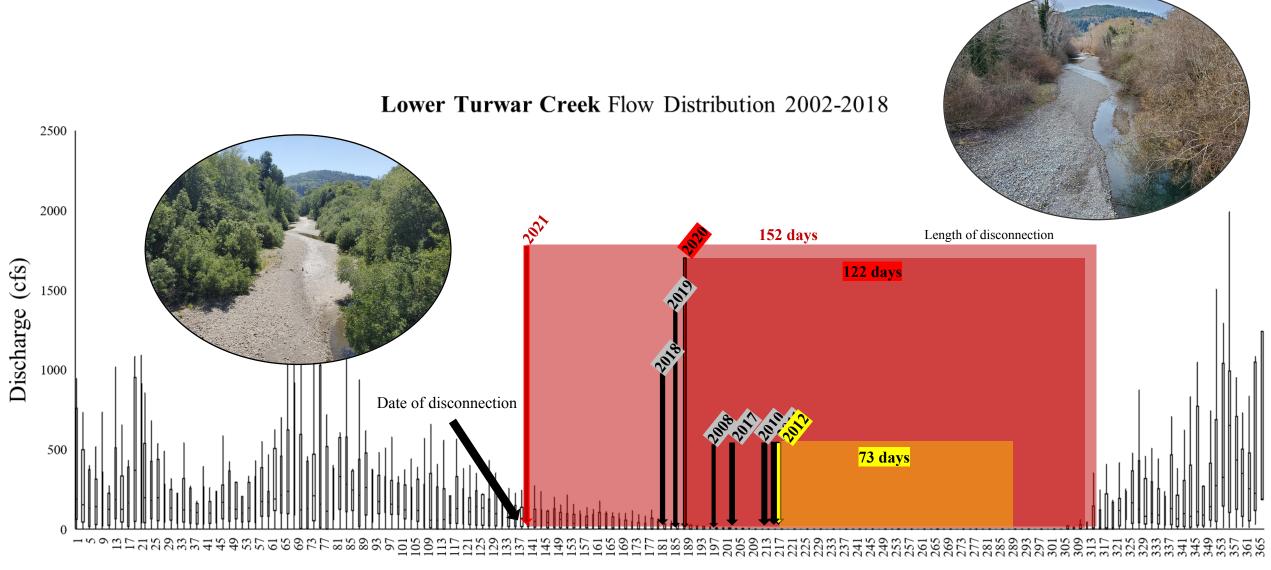

Day of the Year (1-365)

and adjacent to Yurok reservation



Day of the Year (1-365)

and adjacent to Yurok reservation


and adjacent to Yurok reservation

Day of the Year (1-365)

Increasing intermittency observable at tributaries within

and adjacent to Yurok reservation

Day of the Year (1-365)

Historically perennial sites experiencing worsening drought observe periods of disconnection and subsurface flows McGarvey Creek Flow Distribution 2002-2018 400 350 300 Length of disconnection Discharge (cfs) 250 50 days 200 23 days 150 100 16 days Date of disconnection 50 3661 411732222113000173888173666173333 4117322221130001738881733666173333

Day of the Year (1-365)

- BMI life cycle lengths can lead to unique invert composition,
 - some taxa live multiple years (Merrit & Cummins 2008)
 - others produce multiple generations annually (Glifford 1966; Merrit & Cummins 2008).

- BMI life cycle lengths can lead to unique invert composition,
 - some taxa live multiple years (Merrit & Cummins 2008)
 - others produce multiple generations annually (Glifford 1966; Merrit & Cummins 2008).

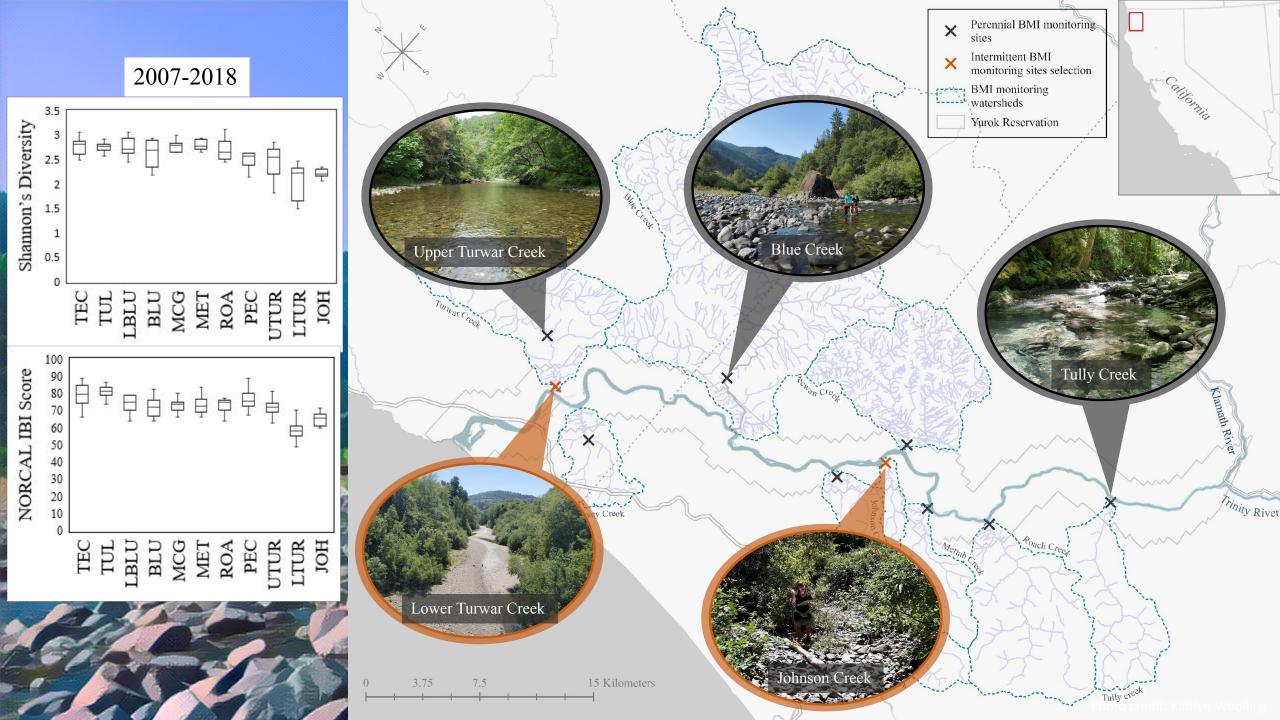
Unique FFG proportions between intermittent and perennial streams.
 Shortened food chains due to drought

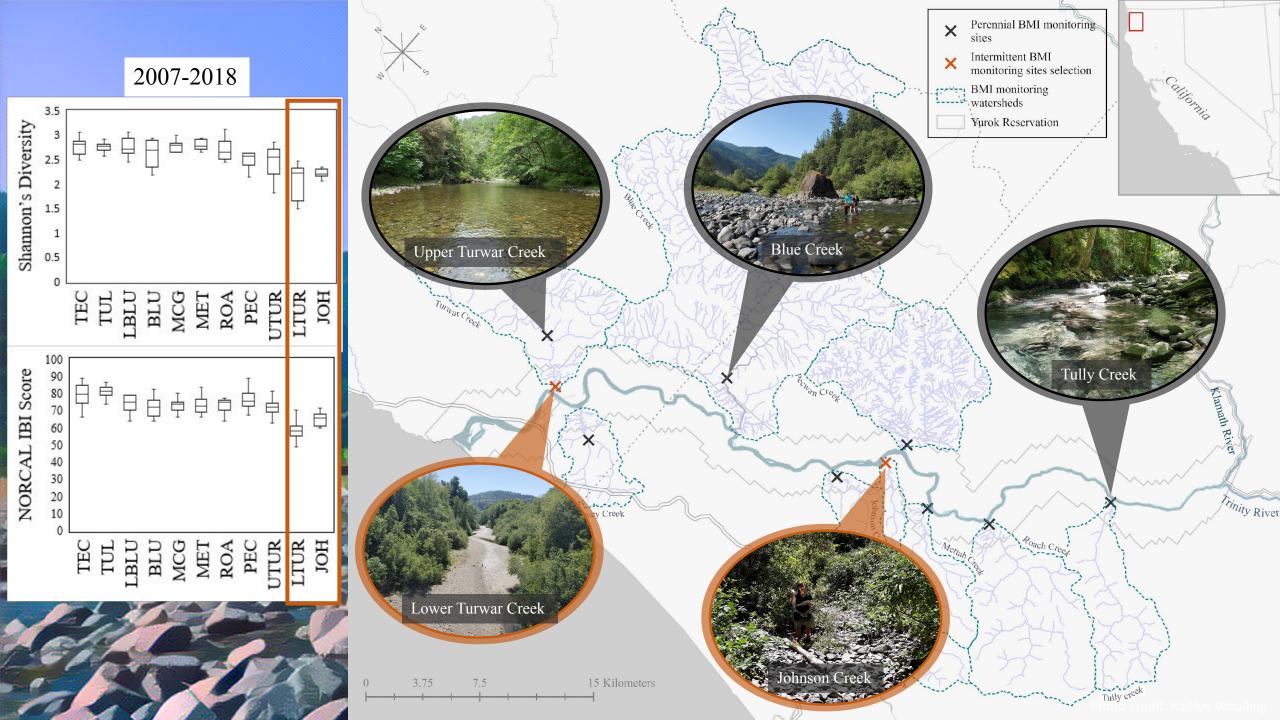
- BMI life cycle lengths can lead to unique invert composition,
 - some taxa live multiple years (Merrit & Cummins 2008)
 - others produce multiple generations annually (Glifford 1966; Merrit & Cummins 2008).
- Unique FFG proportions between intermittent and perennial streams.
 - Shortened food chains due to drought
- The drying process poses changes to residing biota
 - behavioral and or physiological adaptations to drying lead to unique invertebrate compositions (Williams 1987).

- BMI life cycle lengths can lead to unique invert composition,
 - some taxa live multiple years (Merrit & Cummins 2008)
 - others produce multiple generations annually (Glifford 1966; Merrit & Cummins 2008).
- Unique FFG proportions between intermittent and perennial streams.
 - Shortened food chains due to drought
- The drying process poses changes to residing biota
 - behavioral and or physiological adaptations to drying lead to unique invertebrate compositions (Williams 1987).

 Received: 27 April 2018
 Revised: 11 January 2019
 Accepted: 24 January 2019

 DOI: 10.1111/fwb.13270


ORIGINAL ARTICLE


WILEY Freshwater Biolog

Drought ecohydrology alters the structure and function of benthic invertebrate communities in mountain streams

David B. Herbst^{1,2} | Scott D. Cooper^{3,4} | Robert Bruce Medhurst¹ | Sheila W. Wiseman³ | Carolyn T. Hunsaker⁵

Follow-up Questions:

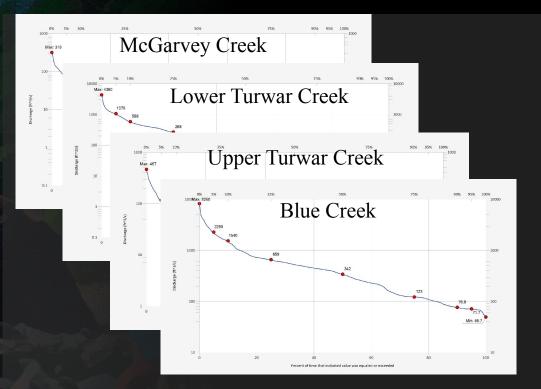
How does flow duration and extended periods of drought impact IBI index scores and BMI compositions in study reaches?

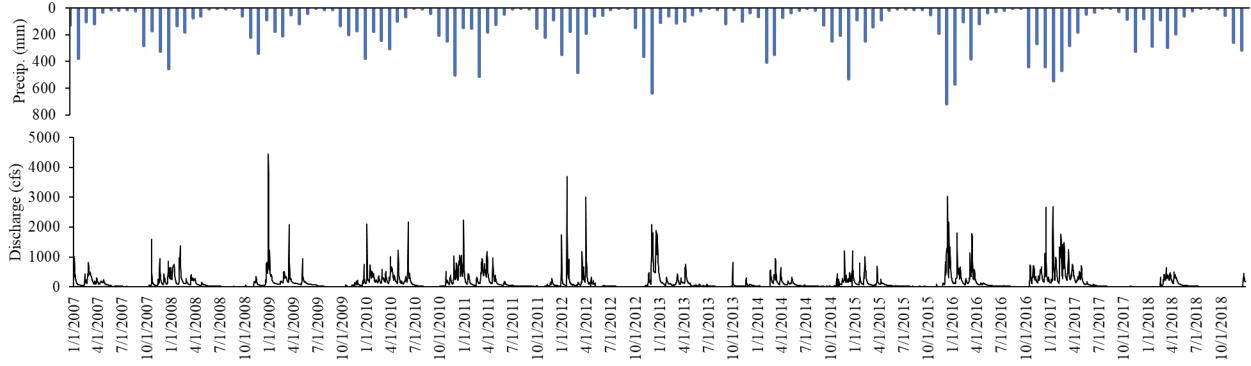
Follow-up Questions:

How does flow duration and extended periods of drought impact IBI index scores and BMI compositions in study

reaches? Data Analysis

- Produced flow duration curves for each YTED gauging location, 50% exceedances used
- Grouped data by stream type and water year
- Removed rare BMI taxa <5% relative abundance
- Standardized dataset to better control for taxa variability
- nMDS ordinations using Bray-Curtis Dissimilarity Index
- Indicator Species Analysis using permutations to test for significance by randomly subsetting data
- SIMPER

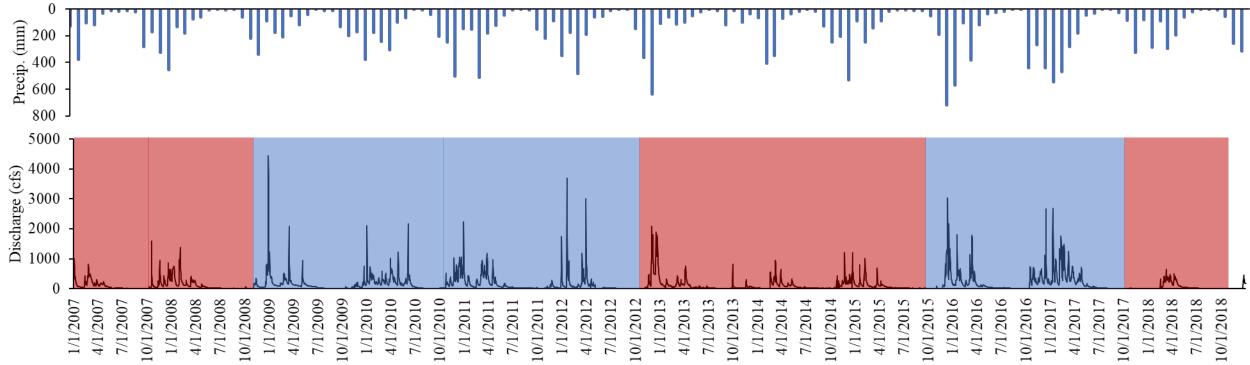



Photo credit: Kaitlyn Woolli

Upper Turwar Creek YTED Gauge

	Perennial	Intermittent
Dry year	PD	ID
Wet year	PW	IW

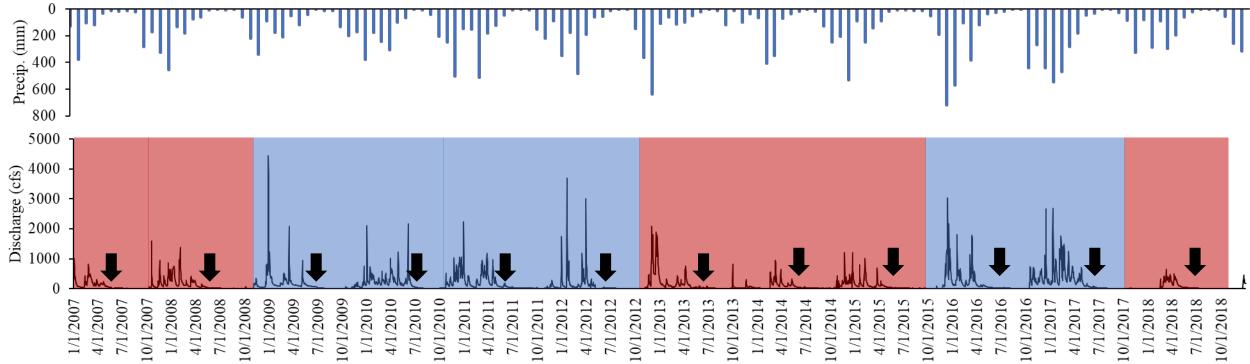
Upper Turwar Creek Discharge and Monthly Precipitation (2007-2018)

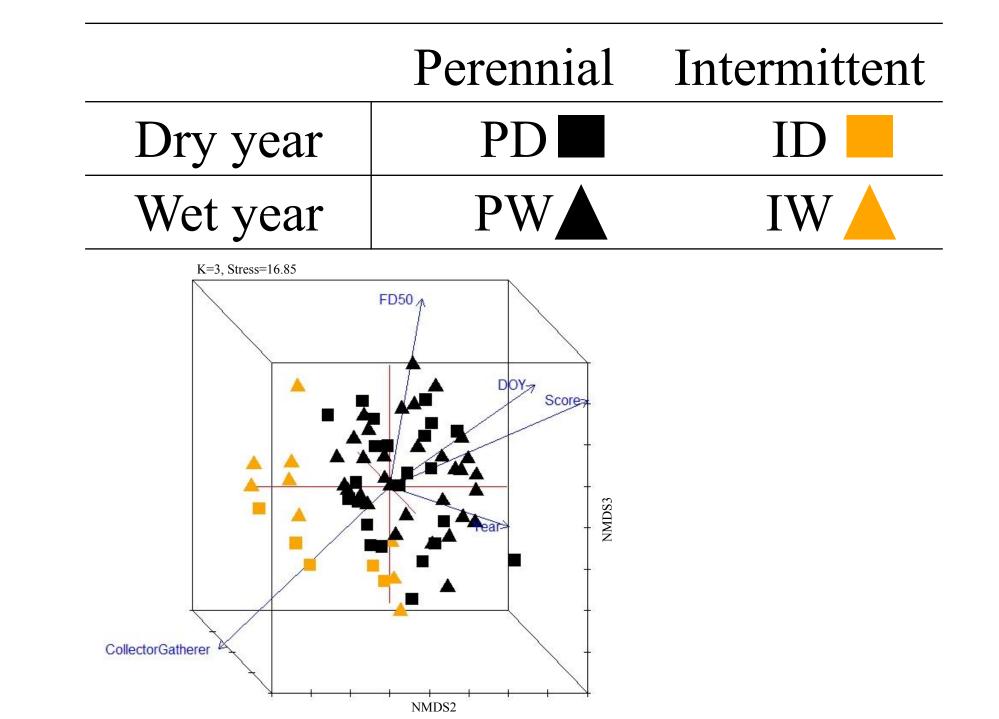


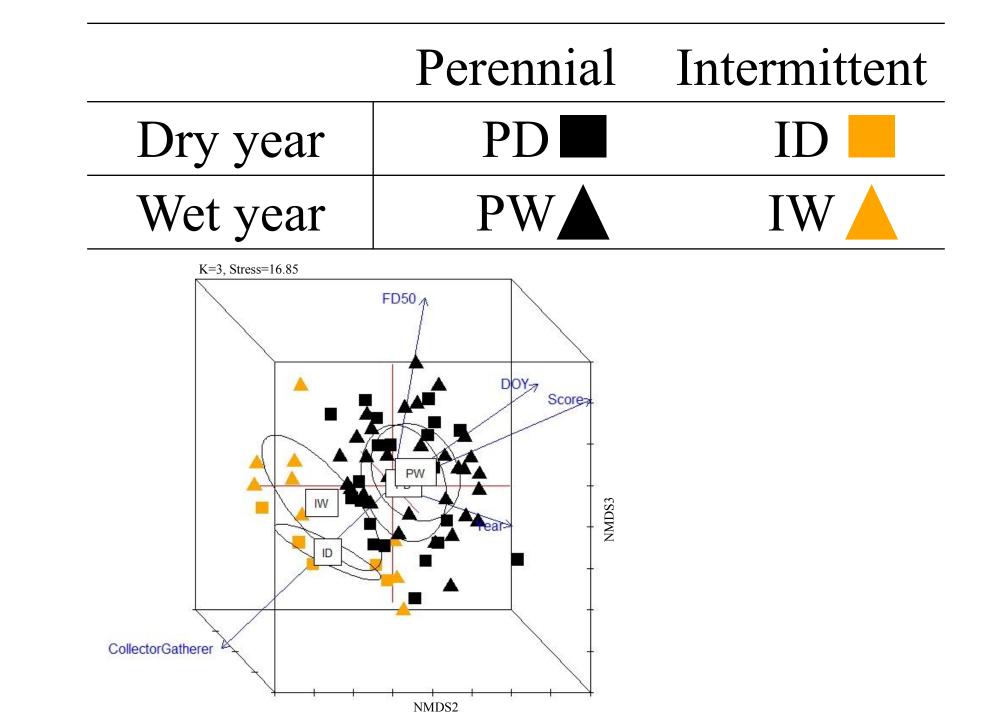
Upper Turwar Creek YTED Gauge

	Perennial	Intermittent
Dry year	PD	ID
Wet year	PW	IW

Upper Turwar Creek Discharge and Monthly Precipitation (2007-2018)

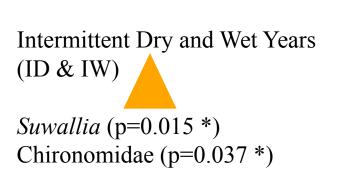


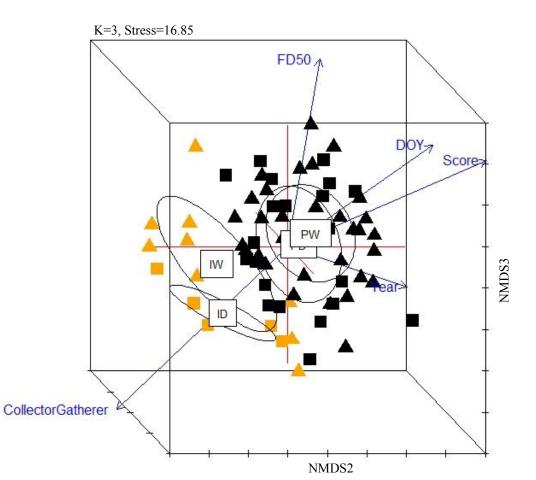

Upper Turwar Creek YTED Gauge



	Perennial	Intermittent
Dry year	PD	ID
Wet year	PW	IW

Upper Turwar Creek Discharge and Monthly Precipitation (2007-2018)

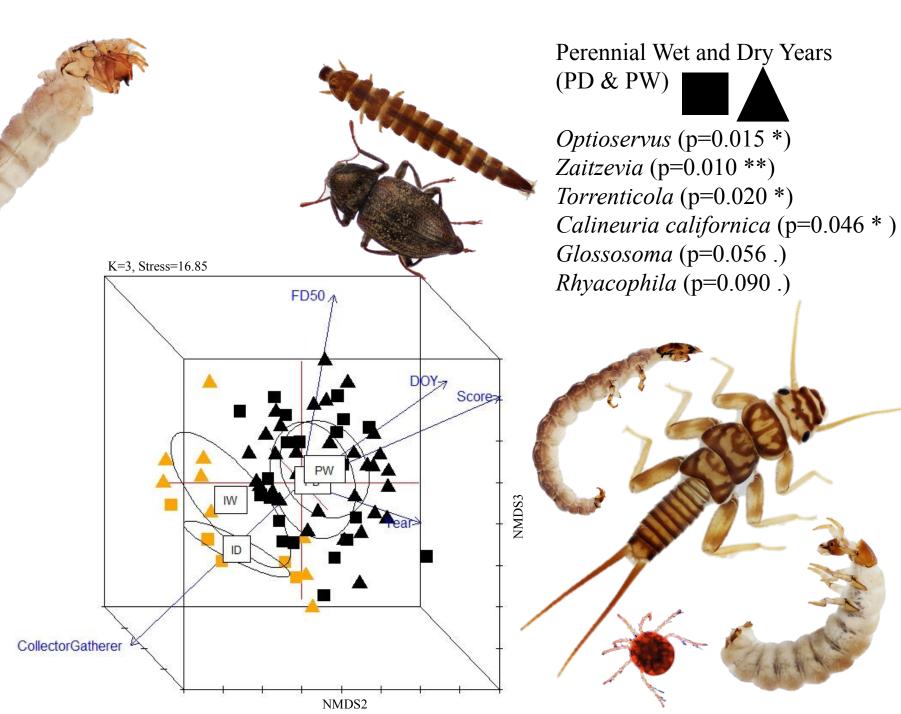




Intermittent Dry Years (ID)

Neophylax (p=0.026 *) Oligochaeta (p=0.057 .)

Perennial Wet and Dry Years (PD & PW)

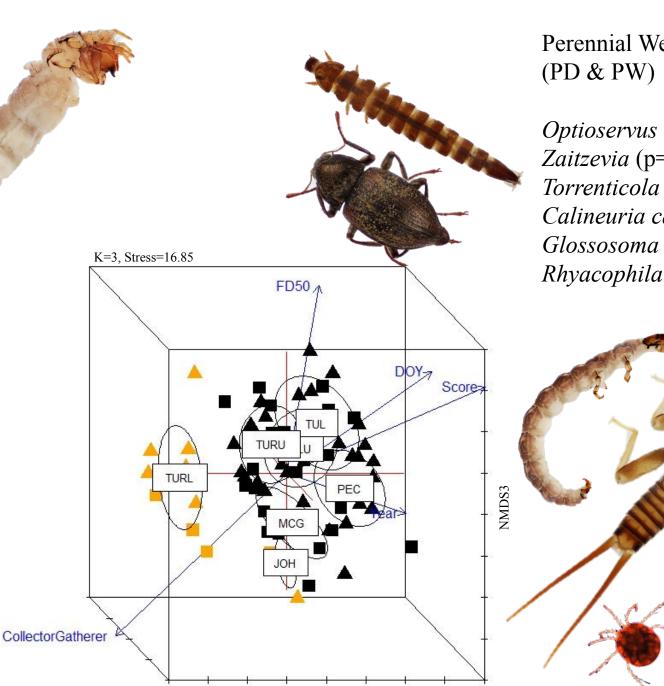

Optioservus (p=0.015 *) *Zaitzevia* (p=0.010 **) *Torrenticola* (p=0.020 *) *Calineuria californica* (p=0.046 *) *Glossosoma* (p=0.056 .) *Rhyacophila* (p=0.090 .)

Intermittent Dry Years (ID)

Neophylax (p=0.026 *) Oligochaeta (p=0.057 .)

Intermittent Dry and Wet Years (ID & IW)

Suwallia (p=0.015 *) Chironomidae (p=0.037 *)



Intermittent Dry Years (ID)

Neophylax (p=0.026 *) Oligochaeta (p=0.057 .)

Intermittent Dry and Wet Years (ID & IW)

Suwallia (p=0.015 *) Chironomidae (p=0.037 *)

NMDS2

Perennial Wet and Dry Years (PD & PW)

Optioservus (p=0.015 *) *Zaitzevia* (p=0.010 **) *Torrenticola* (p=0.020 *) *Calineuria californica* (p=0.046 *) *Glossosoma* (p=0.056 .) *Rhyacophila* (p=0.090 .)

Intermittent Dry Years (ID)

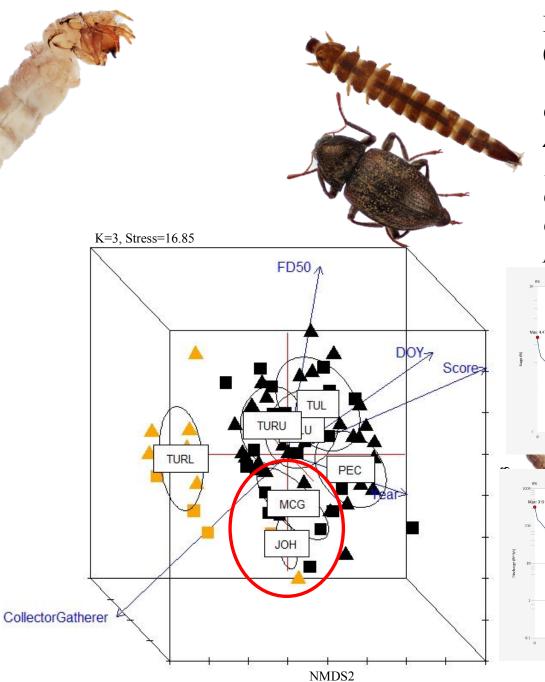
Neophylax (p=0.026 *) Oligochaeta (p=0.057 .)

Intermittent Dry and Wet Years (ID & IW)

Suwallia (p=0.015 *) Chironomidae (p=0.037 *)

K=3, Stress=16.85 FD50 A Score TURL NMDS3 CollectorGatherer NMDS2

Perennial Wet and Dry Years (PD & PW)

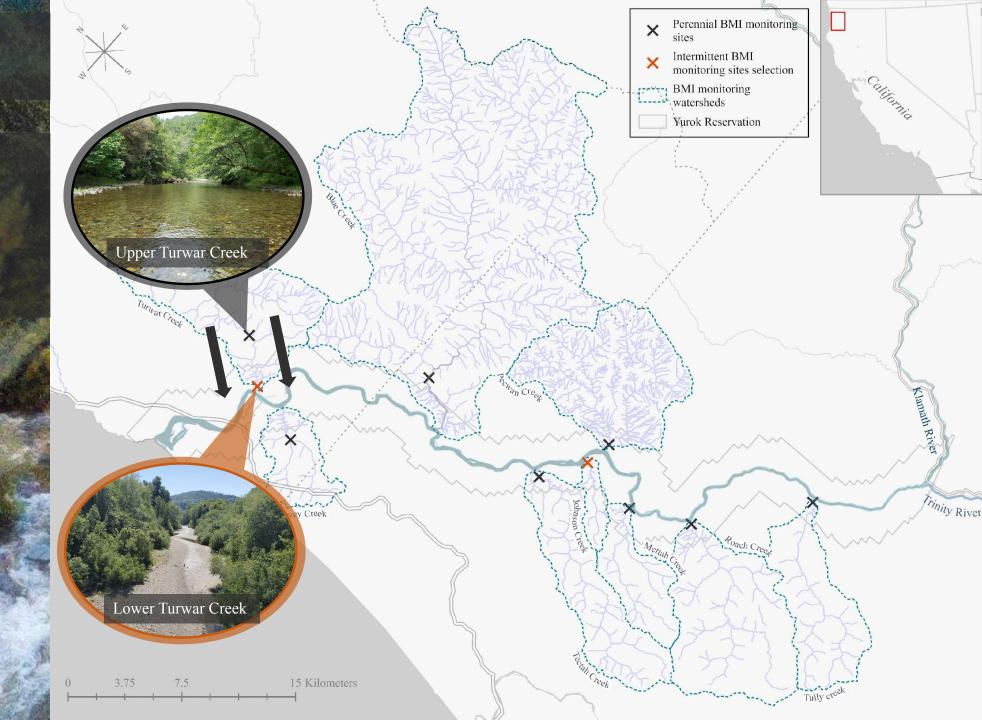

Optioservus (p=0.015 *) *Zaitzevia* (p=0.010 **) *Torrenticola* (p=0.020 *) *Calineuria californica* (p=0.046 *) *Glossosoma* (p=0.056 .) *Rhyacophila* (p=0.090 .)

Intermittent Dry Years (ID)

Neophylax (p=0.026 *) Oligochaeta (p=0.057 .)

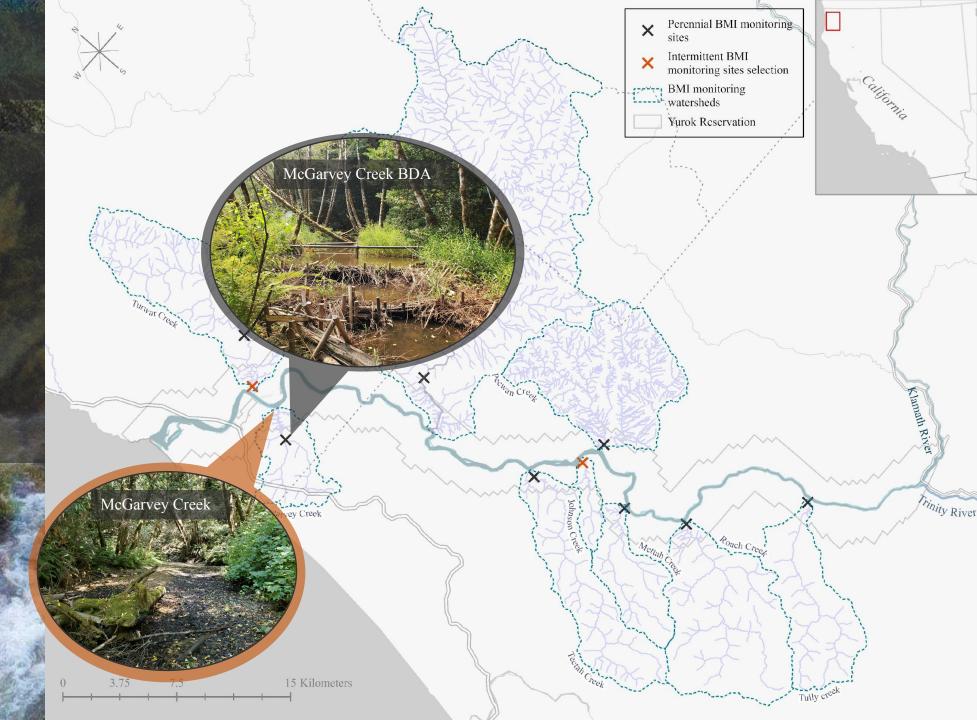
Intermittent Dry and Wet Years (ID & IW)

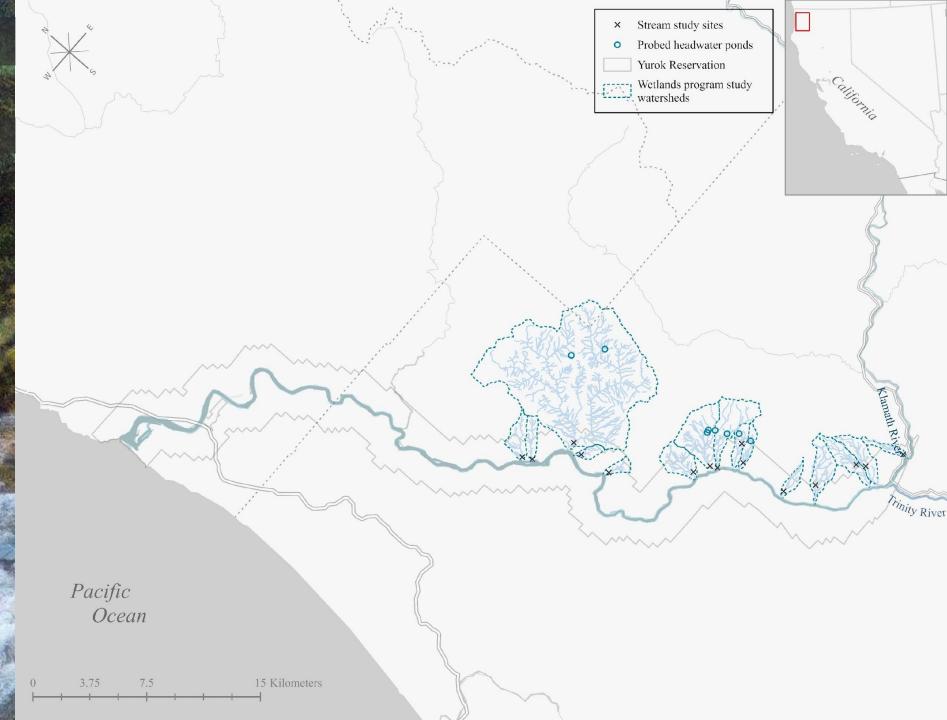
Suwallia (p=0.015 *) Chironomidae (p=0.037 *)


Perennial Wet and Dry Years (PD & PW) *Optioservus* (p=0.015 *) *Zaitzevia* (p=0.010 **) *Torrenticola* (p=0.020 *) *Calineuria californica* (p=0.046 *) *Glossosoma* (p=0.056 .) *Rhyacophila* (p=0.090 .)

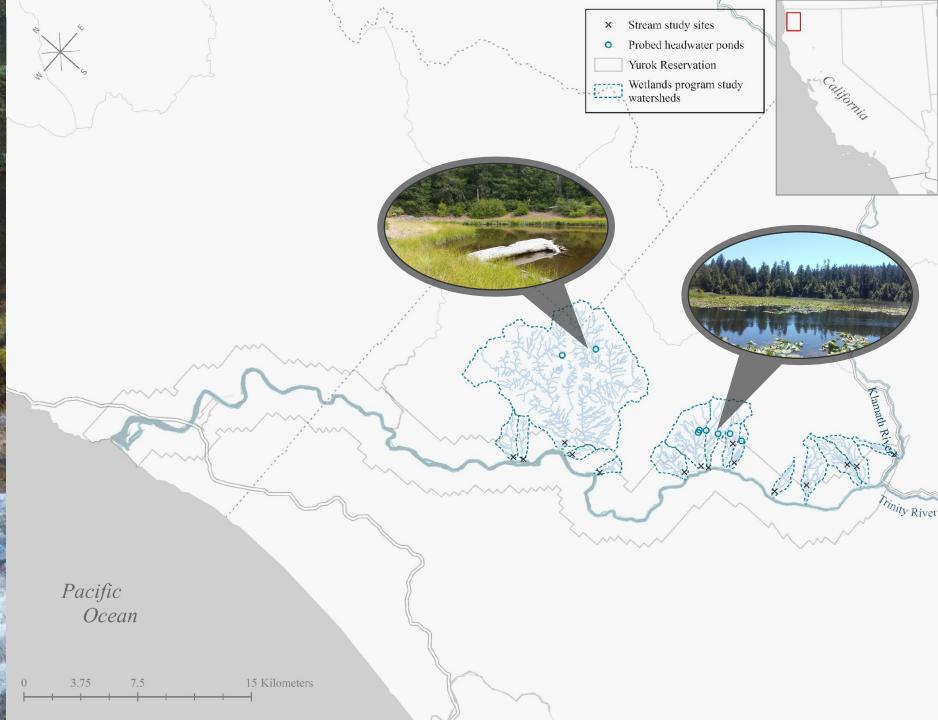
Potential Research Questions

1.18.6

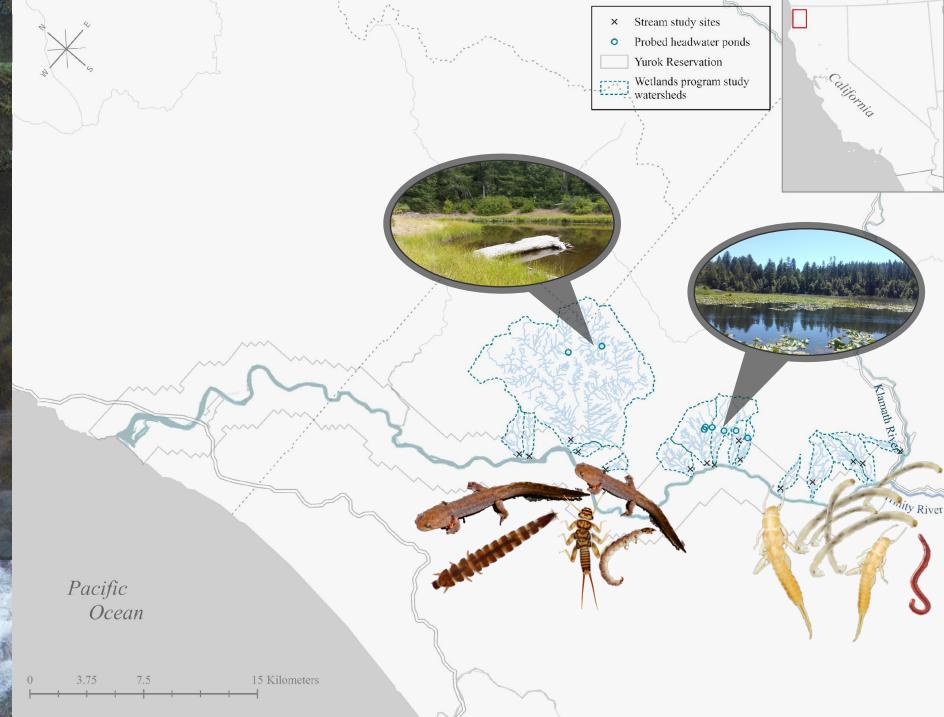

How do upstream perennial reaches contribute to BMI colonization in downstream reaches during periods of dryness?


Potential Research Questions

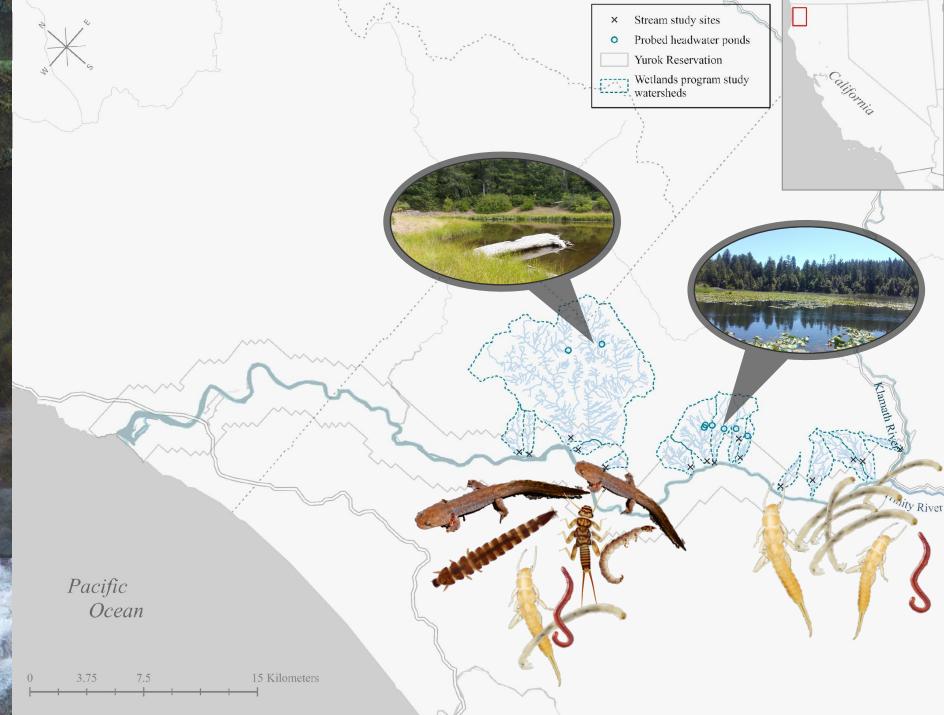
How do upstream perennial reaches contribute to BMI colonization in downstream reaches during periods of dryness?


How do instream restoration projects designed to improve surface flows impact BMIs in critically important perennial reaches?

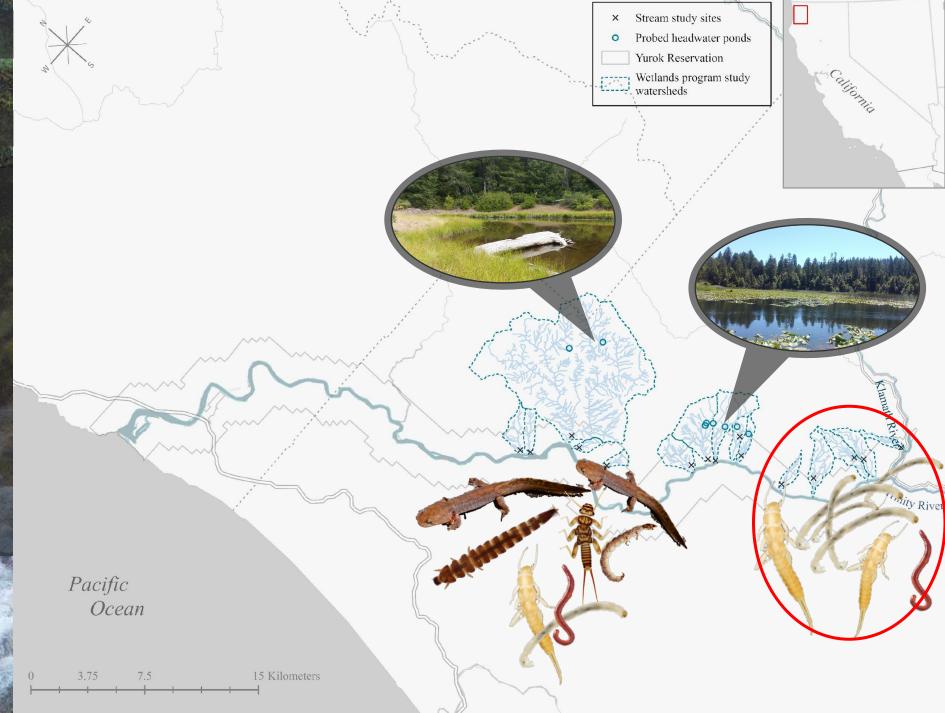
YTED Wetlands Development Project



YTED Wetlands Development Project


YTED Wetlands Development Project

- Stream Duration Assessment Method (SDAM)
- Amphibian eDNA
- Headwater wetland pond restoration,
- Beaver dam analogues,
- road decommissioning,
- Riparian plantings,
- water management, etc.


YTED Wetlands Development Project

- Stream Duration Assessment Method (SDAM)
- Amphibian eDNA
- Headwater wetland pond restoration,
- Beaver dam analogues,
- road decommissioning,
- Riparian plantings,
- water management, etc.

YTED Wetlands Development Project

- Stream Duration Assessment Method (SDAM)
- Amphibian eDNA
- Headwater wetland pond restoration,
- Beaver dam analogues,
- road decommissioning,
- Riparian plantings,
- water management, etc.

Acknowledgements

Thanks to the amazing Yurok tribe staff for help in the field and inspiration:

Matt Hanington, Kaitlyn Woolling, Christine Cosby, Josh Cahill, Louisa McCovey, Micah Gibson, Raphael Cedillo, Roger Buckskin, Richard Meyers, Sarah Beesley, Rocco Fiori, Tori McConnel, Chimaway Lopez, Kassandra Grimm, Jennifer Brown, Aurelia Knight, Koiya Tuttle

Funding provided by Environmental Protection Agency (EPA) Clean Water Act and EPA Tribal Wetlands Development Grant, Region 9

Special thanks the AmeriCorps Watershed Stewards Program corps members for the assistance over the years and collaboration with YTED

Wrs?

Extra Slides

Yurok Tribe Environmental Department (YTED) Impacts from Climate Change

- Drought over the past two decades greater than during preceding century (Diffenbaugh et al. 2015).
- Intermittence in stream flow expected to increase in regions experiencing drought due to climate change and water use (Acuna et al. 2014; Larned et al. 2010; Gerstengarbe et al. 2003)
- Anticipated and observed impacts in Yurok country:
 - rising air temperatures,
 - heavier and unpredictable precipitation,
 - increasing winter flows and flooding,
 - decreasing snowpack,
 - reduced late spring and summer flows,
 - increasing intermittence of stream flow,
 - increasing surface water temperatures,
 - expanding harmful algae blooms and water-borne pathogens,
 - longer and higher intensity fire season,
 - and more.

Lower Turwar Creek