

Alluvial Fans and Salmonid Habitat: The Forgotten and Challenging Landscape In-Between

A Concurrent Session at the 36th Annual Salmonid Restoration Conference held in Fortuna, California from April 11 – 14, 2018.

+ Session Overview

Session Coordinators:

- Michael Love, PE, Michael Love & Associates
- Jay Stallman, PG, Stillwater Sciences

Although fisheries habitat on alluvial fans may not provide the highest quality, the processes occurring on them is commonly essential to maintaining high quality habitats at their proximal and distal margins. When functioning, they can store and meter sediment loads, recharge groundwater, produce cold water springs and seeps at their bases, and support rich and vibrant wetland ecosystems at their distal ends. When these systems are perturbed, the geomorphic responses are often extreme, sometimes resulting in deeply incised channels, or alternatively, aggrading channels and splays of sediment deposited across working landscapes.

Alluvial fans are often critical zones for salmon and steelhead migration to holding, spawning, and rearing habitats located in upstream reaches. The dynamic network of channels and often complex surface and groundwater interactions creates unique challenges to fish passage, especially where water diversions may limit flow availability and alter sediment transport. This session will focus on the hydraulic and geomorphic processes occurring within alluvial fans relative to fisheries habitat and fisheries access to upstream habitat, the causes and responses of dysfunctional alluvial fan systems, and the importance of restoring these processes to create desirable habitats for salmonid recovery.

Presentations

(Slide 4) The Benefits of Restoring Alluvial Fan Processes after a Century of Neglect Michael Love, Michael Love & Associates, Inc.

(Slide 26) Alluvial Fan Construction in the Pacific Northwest Paul Powers, U.S. Forest Service

(Slide 64) Managing Fish Passage Across the Antelope Creek Alluvial Fan Jay Stallman, Stillwater Sciences

(Slide 85) Debris Basins in Southern Santa Barbara County; Their History and Exciting Future Seth Shank and Andrew Raaf, Santa Barbara County Flood Control and Water Conservation District

(Slide 139) Expect the Unexpected — Monitoring Geomorphic Changes and Evaluating Overall Effectiveness in Highly Dynamic Alluvial Fan Environments Ian Mostrenko, Herrera Environmental Consultant

(Slide 173) Salmonid Habitat Use of the Goodell Alluvial Fan: Would Removal of Anthropogenic Features Increase Fish Numbers? Rick Hartson, Upper Skagit Indian Tribe Salmonid Restoration Federation 2018 Conference

Alluvial Fans and Salmonid Habitat: The Forgotten and Challenging Landscape In-Between

Session Coordinators: Michael Love and Jay Stallman Salmonid Restoration Federation 2018 Conference

The Benefits of Restoring Alluvial Fan Processes after a Century of Neglect

Williams Creek, Eel River Bottoms

Michael Love P.E. Arcata, California mlove@h2odesigns.com 707-822-2411

Michael Love & Associates

Hydrologic Solutions

Presentation Outline

- 1. Definitions, Locations, and Types of Alluvial Fans
- 2. Geomorphic Processes and Ecosystem Services Provided by Proper-Functioning Fans
- 3. History of Development on Fans and Maintenance Practices
- 4. Current Conditions and Need for Action

Alluvial fan activity in New Zealand (courtesy of a Otoga Regional Council)

Typical Alluvial Fan

Tasman River, New Zealand

General Features of Alluvial Fans

- G Stream's transition from a confined channel to the unconfined alluvial plain
- Flows emerging onto the fan are free to expand and infiltrate
- Fan is a zone of aggradation from streamflow deposits and/or debris flows
- Channel shifts (avulsions) from
 blockages (vegetation) and breakout
- Fan shaped from frequent radial shifts in the channel

Photo: Ann Youberg, Arizona Geological Survey

5

Streamflow Dominated Fans

From Blair and McPherson (2009)

Petaluma River and Tributaries Mid 19th Century

From Baumgarten et al., 2018, San Francisco Estuary Institute

Role of Alluvial Fans in the Landscape

- Linkage between two fluvial systems
- Buffers water and sediment delivery to receiving waterbody
- Recharges groundwater
- Springs, seeps and overbank flows feed wetlands and streams along the fan's distal end

Bear Creek Alluvial Fan Mattole River Estuary

Wetlands at Distal end of Bear Creek Alluvial Fan

Settlement on Alluvial Fans

Eel River Bottoms

North Coast Alluvial Fans

Morrison Creek, Smith River, California

0011003. SAL 0000 500 500 500

OWNER SAL

Historical Management of Streams on Fans

S Channelizing

- S Dredging and Berming
- S Annual maintenance

Francis Creek Dredging to Move Depositional Lobe Further Out onto Alluvial Plain

Williams Creek Alluvial Fan

Francis Creek>>

Blue Line = 1916 Alignment

Elevation (feet) 20 - 21 21 - 22 22 - 23 23 - 24 24 - 25

33

- 43

Williams Creek Alluvial Fan Current Day Depositional Lobe

Living on Fans in Current-Day Regulatory Environment

Channel Aggradation Leads to Berm Breaching

Cessation of "Channel Maintenance" Leads to Flooding/Avulsions

Cummings Creek, Van Duzen River Tributary, Carlota CA

Debris and Sediment Basins

A County

Sediment Basin-Salt River, Ferndale, CA

Francis Creek Ferndale, CA

Thinking Forward – Managing Alluvial Fans

- Consider the benefits functioning fans provide at their downstream end:
 - Groundwater recharge
 - Improved water quality
 - Expand wetlands,
 - Backwater habitats
- Rethink the need for single thread channels and "continuous fish passage corridors" across fans
- Aim to restore fluvial processes on alluvial fans
 - Full restoration
 - Containment of active fan corridor
 - Rotational depositional lobes

Alluvial Fan Construction in the Pacific Northwest Paul Powers-Deschutes National Forest

🔺 🚯 🙀 🗗 🗤

2/16/2018

Separation berm blocking flow into relic channels

Photo credit: James Pettett

Photo credit: James Pettett

Implementation

Implementation

 25 streamside trees (38-63" dbh) were pulled over using a truck-mounted yarder to serve as large, stable key pieces

McKenzie River

← Flow

Flow

Project Area = 600 acres

South Fork McKenzie River

Pre

FISH PASSAGE ACROSS THE ANTELOPE CREEK ALLUVIAL FAN

Presented by Jay Stallman Stillwater Sciences

Salmonid Restoration Conference 14 April 2018 • Fortuna, CA

BACKGROUND

- Ø 35 miles of critical habitat for Chinook salmon and steelhead
- Ø 5 mile migration across alluvial fan
- Reduced flow and elevated temperatures in alluvial fan reaches due to diversion at Edward Diversion Dam
- Ø Priority actions (NMFS 2014):
 - Restore instream flows during migration periods
 - Implement fish passage and entrainment improvement projects to restore connectivity
 - Identify and construct a defined stream channel for upstream and downstream fish migration

OBJECTIVES

- Occurrence and life histories of Chinook and steelhead
- **Ø** Geomorphology
- **Ø** Stream flow and temperature
- Impediments to passage
- Hydraulic conditions at critical passage locations
- **Ø** Flow recommendations for passage

TIMING OF SALMON AND STEELHEAD MIGRATORY LIFE HISTORY

Species	Life stage	Month											
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Spring-Run Chinook	Adult immigration												
	Juvenile emigration												
Fall-Run Chinook	Adult immigration												
	Juvenile emigration												
Steelhead	Adult immigration												
	Adult emigration												
	Juvenile emigration												

SPRING-RUN CHINOOK ESCAPEMENT

ALLUVIAL FAN CHANNEL NETWORK

Ø Dissected alluvial fan

- Multiple channels connect Sacramento River to upper basin
 - New Creek
 - Craig Creek
 - Butler Slough
 - Antelope Creek
- Flow separation at distributary junctions

ANTELOPE CREEK-CRAIG CREEK DISTRIBUTARY JUNCTION

STREAMFLOW AND TEMPERATURE

Four Monitoring Sites:

- UAC Upper Antelope Creek WY 2010, 2013-2018
- AED Antelope Creek below Edwards
 Diversion Dam
 WY 2017-2018
- ACG Antelope Creek at Cone Grove Park WY 2010, 2013-2016
- CRC Craig Creek at State Route 99 WY 2010, 2013-2018

UNIMPAIRED FLOW

REGULATED FLOW AND TEMPERATURE DEPARTURES FROM UNIMPAIRED CONDITIONS

FLOW, TEMPERATURE, AND PASSAGE: WY 2017 (WET YEAR)

POTENTIAL PASSAGE BARRIERS

ØDistributaries:

- Dry reaches
- Intermittent flow over bedrock
- Channel-spanning beaver dams
- Numerous potential critical riffles
- Thermal barriers
- Dense aquatic vegetation at Sacramento River confluence

ØPrimary low flow migration corridor:

- Unimpeded adult and juvenile passage
- Numerous potential critical riffles
- Migration into mainstem influenced by fluvial processes in Sacramento River

PRIMARY LOW FLOW MIGRATION CORRIDOR

Ø 13 most restrictive sites identifiedØ 8 study sites selected

Passage Site AO–02

SUMMARY

Antelope Creek alluvial fan

- Young fan deposits
- Multiple distributaries at winter/early spring base flows
- Dynamic channel at distributary junctions affects flow splits
- Impediments to adult Chinook immigration in distributaries
- Ø Primary migration corridor
 - Adult Chinook migration at flows >32cfs
 - Delayed migration at flows 32-35 cfs
 - 0.9 ft RCT depth at 80 cfs in most restrictive reach
 - >25% unimpaired exceedance flow (flows <100 cfs) most affected by diversion

Ø Unimpaired flow availability limited during later months and drier WY types

ACKNOWLEDGEMENTS

- Patricia Bratcher
 Sacramento River Habitat Restoration Coordinator,
 California Department of Fish and Wildlife
- Tricia Parker and Brenda Olson Anadromous Fish Restoration Program
- Matt Johnson California Department of Fish and Wildlife
- Mark Gard USFWS, Restoration and Monitoring Program
- Tehama County Resource Conservation District
- Jim Edwards Edwards Ranch
- Darrel Mullins Los Molinos Mutual Water Company
- Dirk Pedersen, Ian Prior, Dylan Caldwell Stillwater Sciences
- Numerous private landowners

Santa Barbara County Debris Basins

Their history and exciting future

Andrew Raaf & Seth Shank Santa Barbara County Flood Control District

Debris Basins

What are they?

- Built after wildfires to lessen potential flood damage
- Most were built in the 60's/70's
- Earthen fill with concrete/rock cap and 48" culvert pipe
- Designed to catch large debris while passing sediment/water (not the case)
- Built at top of alluvial fan/urban interface
- Built by ACOE/SCS and given to SBCFCD to maintain
- 10 Debris Basins sites within Steelhead creeks
- Now represent fish passage barriers

Steelhead Trout

Sub-population called Southern California Distinct Population Segment or "DPS". Santa Maria River to Tijuana River. Federally listed under the ESA in 1997.

> Steelhead Critical Habitat in SBC Flood Control District Annual Plan Creeks

Strategic Basin Locations

Maintenance Program

Annual Clean-outs until 1987
As-needed from 1987-1994
Routine Maintenance Program
1996-Present

- 15'-wide pilot channel
- Complete Desilting if 25% full or after a fire in the watershed.
- Cold Spring debris basin under current program

Biological Opinion

- Physical barriers
- Ops/maintenance alter sediment distribution
- "Jeopardy" determination
- 5 basins to be removed/modified within 10 years
- Submit plans to NMFS along the way

Removal vs Modification

- "Removal" has fewer requirements
- "Modification" involves more criteria
- Bio Opinion favors "Removal" and "Stream Simulation" method

"Stream Simulation" Method

- Measures and mimics a "reference reach"
- Assumes natural processes
- Slope and Bedload are main features

Longitudinal Profile

Horizontal Distance (ft)

Progress through Dec 2017

- 95% "stream sim" designs for 2 sites
- 30% designs for remaining 3 sites
- Partial grant funding
- Bids out to contractors
- Pending NMFS approval to begin demolition in 2018...

Thomas Fire

Thomas Fire

- Dec 4 Jan 12
- ~285,000 acres
- Burned ~100% of watersheds above some debris basis

Debris Flow – Jan 9

- ~3:45 am
- 200-yr intensity precipitation
- 0.78 inches / 15 minutes
- Directly impacted burned watersheds

NEXRAD LEVEL-II KVBX - VANDENBERG AFB, CA 01/09/2018 08:03:18 GMT LAT: 34/50/17 N LON: 120/23/44 W ELEV: 1233 FT VCP: 12

REFLECTIVITY ELEV ANGLE: 0.46 SWEEP TIME: 08:03:21 GMT

1/9 Debris Flow

- 21 fatalities
- 2 victims still missing
- 107 homes destroyed
- 1,415 homes damaged

Past vs Present

What Happened at the Basins?

- Completely filled with boulders/etc
- Debris volume and speed was reduced
- Max capacity was contained
- Overwhelmed and spilled downstream

Cold Springs Basin

Santa Monica Basin

San Ysidro Basin

Fish-Passage Sites?

- Santa Barbara County has 2 previous dam-removal projects
 - -1 "removal" and 1 "modification"

Lillingston Debris Basin

(complete removal 2010-2013)

- Access constraints
- Resident trout
- Spider excavator
 - Small but nimble
 - Slow
- Phased approach
- 25,000cy material
 - Gradual sediment release
 - Reinforced "cap"
- Debris rack

Debris Rack

PRINT A

- 1000' downstream of basin
- 300' upstream of only bridge access
- Slurry mix
- Temporary
- Catches debris, not sediment...

Phase 1 Complete

Phase 2 Objectives/Concerns

- New thought process
 - <1cy sediment moved year 1
 - Lets move some dirt!!
- D/S pool remains
 - Fish/turtles
- No overland flow upstream
 - No dewatering!
- Regulatory agencies wanted wire mesh covered in fear of animals/fish getting caught

Phase 3 Objectives/Concerns

- Final Phase
 - Minimal movement previous phases
 - More sediment transport
 - Final channel would be to narrow
 - No further disturbance
 - Downstream pool full of sediment (tracked equipment access?)
 - No creek flow upstream (roughen channel...)

Project Complete

- Flanks broken up and left in place to protect steep slopes
- Rock placed throughout channel to establish new channel , slow and redirect flow
- 8% slope through site

03 04.2014 11:41

February 2017

2018 Debris Flow

04.04.2018 09:56

Gobernador Debris Basin (modification 2008)

- District needed to maintain basin function while restoring fish passage and sediment transport
- Easy construction access, no sediment trapped in basin
- 3-3' deep resting pools with 1' max jump heights
- Embedded boulder structures with streambed material to maintain ~5% slope
- Longitudinal and transverse cutoff walls to ensure structure stability

Profile

- Grouted rock cutoff walls
- Rock structures (~5% slope)
- Streambed material

HYDRAULIC DATA (Q100 = 8,620 efs)					
RIVER STATION	HOL (ff)	EGL (ft)	VELOCITY (#/s)	CHANNEL	BAARS
885	380,65	380.91	4.13	0.04	0.06
880	380.68	380.90	3.82		1
879.5	380.68	380.90	3.82		
868.5	380.43	380.87	5.35		
868	380.44	300.05	5.21		
859	379.65	380.77	8.47		

SCALE:1"-10"

NOTE: THE DEPTH OF CUT-OFF WALLS WILL BE CONFICURED IN THE FIELD BY THE ENGINEER BASED UPON EXISTING GROUND CONDITIONS.

> VORTEX BOULDER WEIR IS LOCATED O STA 7+26 & STA 7+86

Inlet Structure

- Splitter walls to trap large debris
- Retractable gates
- Equipment access during storm flows

Rock structures and pool

2018 Debris Flow

Transverse cutoff wall visible Pools filled with sediment (typical of burned watershed Overall good condition

04.04.2018 10:41

What's Changed?

- EVERYTHING!
- Hydrology
- Topography
- Vegetation
- Watershed runoff
- Community concern

■MENU Home | Local News | Schools | Sports | Business | Nonprofits | Arts | Homes & Lifestyle | Your Health

Local News

Santa Monica Debris Basin Above Carpinteria Dubbed 'Hero' After Jan. 9 Debris Flow

Earlier this month, above, the Santa Monica Debris Basin in Carpinteria still held a large quantity of boulders and other materials brought down from the Thomas Fire burn area for a strong storm on Jan. 9. County officials hope to have it completely cleared by March 15. (Tom Fayram photo)

1. Famous Santa Barbara Dog Statue, Historical Home For Sale

2. History-Making Night: Dos Pueblos, San Marcos, Santa Barbara Make CIF Water Polo Finals

3. Driver Killed in Fiery Single-Vehicle Crash on Highway 101 in Orcutt

 Regional Rail Panel Backs Commuter Train to Santa Barbara County's South Coast

5. Falcon 9 Rocket Delivers Spanish Satellite After Vandenberg AFB Liftoff

DAILY NOOZHAWK

Subscribe to Noozhawk's A.M. Report, our free e-Bulletin sent out every day at 4:15 a.m. with Noozhawk's top stories, hand-picked by the editors.

SIGN UP NOW >

FACEBOOK

Noozhawk

15.318 likes

 Debris basins saved lives & property

- Watersheds are not recovered
- Fire season is never-ending

Where Are We Now?

- Emergency cleanup and repair
- Prep for next winter
- Re-Map and survey
- Revisit Debris Basin removal plans
- Community engagement with NMFS
- New options for "Modification"
- Many "Unknowns" remain

Questions/ Acknowledgements

- 1 Korchinski, B. and Barrett, W. 2018 Montecito Debris Flows.
- 2 Turner, A.K., and Schuster, R.L., eds, 1996, Landslides, investigation and mitigation, Transportation Research Board Special Report 247: Washington D.C., National Research Council.

Expect the Unexpected – Monitoring Geomorphic Changes and Evaluating Overall Effectiveness in Highly Dynamic Alluvial Fan Environments – The Hansen Creek Story

Ian Mostrenko Herrera Environmental Consultants

Acknowledgements

Co-Authors

- Christina Avolio (Herrera)
- Lauren Rich (USIT)
- Jeff McGowan (Skagit County)

Partners

- WA-DNR, Skagit County,
- SCD Watershed Masters, SFEG, PSE
- Skagit Valley College

Funders

- NOAA
- NACo
- EPA
- NWIFC
- WA-ECY
- WA-SRFB
- SKAGIT COUNTY

Outline

- Background
- Design Concept
- Hydrology
- Geomorphic Changes
- Geomorphic Monitoring
 - Stream Channel
 - LWD Changes
 - Sediment Deposition
- The Unexpected?

Background

Background

17,730 Ha of Wetlands

Source: B. Collins, 2000

Background

Agriculture
Background

Objectives:

- Restore natural geomorphic and biological processes
- Alleviate downstream sediment deposition and the need for dredging.
- Promote self-sustaining channel and tributary forms
- Reconnect floodplain
- Enhance fish habitat (off-channel rearing)
- Reduce flooding for nearby properties

Design Concept

- Passive Activation
- Starter channels
- Notches in existing levee
- Add floodplain structure
 - LWD Density in areas with high probability of inundation
 - Dense planting for high roughness
- Let natural processes do the work

Herrera

Hydrology

- Basin size = 20 km^2
- Average Precipitation = 50 inches
- Relief = 4,000 feet
- Flood Flows:

Recurrence interval	Flow		
(years)	(cfs)		
100	698		
50	644		
25	578		
10	495		
5	413		
2	314		
1.25	256		

Hydrology

ERRERA

2009

Braided Transfer Zone

2013

2015

Geomorphic Change (2012 – year 3)

Transition

Fan

Wetland

Monitoring Geomorphic Change

- Channel Length
 - Quantitative
- Large Woody Debris (LWD)
 - Quantitative
- Sediment
 - Qualitative
- Physical Habitat
 - Pools and riffles

Geomorphic Change: Channel Length

Geomorphic Change: LWD

Typical floodplain roughening logs approx. 4 to 5 feet above grade

2 to 3 feet of deposition at Floodplain roughening log (2014)

Vegetation in wetland buried in after the March 2011 Flood

0.8m (2.6 ft) cumulative deposition in wetland (measured in winter 2014)

Physical Habitat

Table. Habitat Unit Survey data – Pools and Riffles within the fan (Reach 3)

	Pools			Riffles				
	2010	2011	2012	2013	2010	2011	2012	2013
Number	23	17	20	26	23	19	25	32
Surface area (m ²) / % surface area	780/ 25%	640/ 20%	1080/ 25%	1110/ 28%	2400/ 75%	2460/ 80%	3170/ 75%	2860/ 72%

Table. Habitat Unit Survey data – Pools and Riffles within the wetland (Reach 4).

	Pools			Riffles				
	2010	2011	2012	2013	2010	2011	2012	2013
Number	20	25	18	13	16	17	15	7
Surface area (m ²) / % surface area	4460/9 4%	3950/ 90%	5135 / 90%	3180/ 90%	280 6%	420 10%	540 / 10%	200/ 10%

- Expect the unexpected:
 - Hydrology (loss of seeding and plants)

- Expect the unexpected:
 - Hydrology (loss of seeding

• Beaver

Date	# Dams	Inundated Area (m²)
7/3/2013	2	601
9/19/2013	6	1,920
9/24/2013	6	3,124
10/22/2013	13	7,686

Lessons Learned

- Expect the unexpected:
 Hydrology (loss of seed)
 - Beaver
 - Sediment (fine)

- Expect the unexpected:
 - Hydrology (loss of seeding and plants)
 - Beaver
 - Sediment (fine)
 - Neighbor acceptance

Thank You

Restoring Tributary Alluvial Fans Importance to Skagit Chinook Recovery

36th Annual Salmonid Restoration Conference

April 11-14, 2018

Fortuna River Lodge

Upper Skagit Indian Tribe

Christina Avolio Jose Carrasquero

Regional Setting – Puget Sound

Watershed Setting – Skagit River

Watershed Setting – Skagit River

Diversity of salmonid species and population sub-structures

Recent severe declines of Coho and Chum salmon

20

Miles

ESA threatened: Chinook salmon Steelhead trout British Columbia Bull trout

Washington

Project Setting – Goodell Creek

Chinook Recovery Strategy

Source: Skagit Watershed Council, Year 2015 Strategic Approach

Chinook Recovery Strategy

Source: Skagit Watershed Council, Year 2015 Strategic Approach

Chinook Recovery Strategy

Source: Skagit Watershed Council, Year 2015 Strategic Approach
Chinook Recovery Strategy

Source: Skagit Watershed Council, Year 2015 Strategic Approach

Chinook Recovery Strategy

Source: Skagit Watershed Council, Year 2015 Strategic Approach

Chinook Recovery Strategy

Source: Skagit Watershed Council, Year 2015 Strategic Approach

Goodell Creek - Current Condition

Source: Herrera Environmental Consultants, Inc.

Goodell Creek – Restoration Plan

Approach:

• Relative comparison: current condition vs. restored

Approach:

- Relative comparison: current condition vs. restored
- Rearing habitat capacity
 - Habitat types
 - Parr and yearling

Approach:

- Relative comparison: current condition vs. restored
- Rearing habitat capacity
 - Habitat types
 - Parr and yearling
- Fry productivity
 - Channel form \rightarrow redd density and fry survival

Approach:

- Relative comparison: current condition vs. restored
- Rearing habitat capacity
 - Habitat types
 - Parr and yearling
- Fry productivity
 - Channel form \rightarrow redd density and fry survival
- Smolt-to-adult survival to estimate adult abundance

Data source: Skagit Watershed Council; NAIP imagery

Data source: Skagit Watershed Council; NAIP imagery

Tributary fish use

- Snorkel survey study
 - Small river and large tributary habitat types

Tributary fish use

- Snorkel survey study
 - Small river and large tributary habitat types
 - Parr and yearling life-history strategies

Some caveats – habitat area:

Some caveats – fish density:

Methodological constraints

- Sample size for some habitat types

- Representative channel conditions

- Snorkel surveys underestimate density

Parr capacity – spring "frequent flood" (715 cfs)

Parr capacity – spring "frequent flood" (715 cfs)

Habitat type	Density (m ⁻²)	Current area (m²)	Restored area (m ²)
Mid-channel	0.000	32,861	34,676
Edge	0.055	4,282	5,984
Diffuse flow	0.021	1,365	5,149
Wetted margin	0.021	6,340	10,515
Slough	0.086	1,394	3,175
Floodplain	0.086	0	4,102
Total	NA	46,242	63,601

Largest gains found lateral to channels

Parr capacity – spring "frequent flood" (715 cfs)

Habitat type	Density (m ⁻²)	Current area (m²)	Restored area (m ²)	Current capacity	Restored capacity
Mid-channel	0.000	32,861	34,676	0	0
Edge	0.055	4,282	5,984	236	329
Diffuse flow	0.021	1,365	5,149	29	108
Wetted margin	0.021	6,340	10,515	133	221
Slough	0.086	1,394	3,175	120	273
Floodplain	0.086	0	4,102	0	353
Total	NA	46,242	63,601	518	1,284

Yearling capacity – summer base flow (140 cfs)

Yearling capacity – summer base flow (140 cfs)

Habitat type	Density (m ⁻²)	Current area (m²)	Restored area (m ²)	
Mid-channel	0.021	20,353	16,562	
Edge	0.088	3,541	2,487	
Diffuse flow	0.046	2,251	8,303	
Wetted margin	0.000	7,342	9,722	
Slough	0.086	0	1,897	
Floodplain	NA	0	0	
Total	NA	33,487	38,971	

Increased channel margin and off-channel area

Yearling capacity – summer base flow (140 cfs)

Habitat type	Density (m ⁻²)	Current area (m²)	Restored area (m ²)	Current capacity	Restored capacity
Mid-channel	0.021	20,353	16,562	427	348
Edge	0.088	3,541	2,487	312	219
Diffuse flow	0.046	2,251	8,303	104	382
Wetted margin	0.000	7,342	9,722	0	0
Slough	0.086	0	1,897	0	163
Floodplain	NA	0	0	0	0
Total	NA	33,487	38,971	(843)	(1,112)

Yearling capacity – summer base flow (140 cfs)

Habitat type Mid-channel Edge	De ir 0	518 parr nadequate to fill yearling canacity	tored arr (m ²) 6,562 2,487	1,284 par yearlin habita capacity	r fill ng at fully
Diffuse flow	0.04	capacity	8,303	۲u-	382
Wetted margin	0.000	7,342	9,722	0	0
Slough	0.086	0	1,897	0	163
Floodplain	NA	0	0	0	0
Total	NA	33,487	38,971	843	(1,112)
				5	

Fry Abundance

Redd density

- Skagit Chinook Recovery Plan
 - Plane-bed channel = 2.7 redds mile⁻¹
 - Forced pool-riffle channel = 48 redds mile⁻¹

Fry Abundance

Redd density

- Skagit Chinook Recovery Plan
 - Plane-bed channel = 2.7 redds mile⁻¹
 - Forced pool-riffle channel = 48 redds mile⁻¹

Fry Abundance

Redd density

- Skagit Chinook Recovery Plan
 - Plane-bed channel = 2.7 redds mile⁻¹
 - Forced pool-riffle channel = 48 redds mile⁻¹

Egg-to-fry survival

- Skagit Chinook Recovery Plan
 - Straightened channel lacking LWD = 341 fry adult⁻¹

Assume current conditions result in increased redd scour and lack of flood refuge for fry

Egg-to-fry survival

- Skagit Chinook Recovery Plan
 - Straightened channel lacking LWD = 341 fry adult⁻¹
 - Complex channels with hydraulic refuges = 435 fry adult⁻¹

Assume reconnecting forested floodplain and relic channels will increase egg-to-fry survival

Combining redd density and egg-to-fry survival to estimate **fry abundance**

Alluvial fan condition	Number of redds	Number of adults	Fry adult ⁻¹	Fry abundance
Current plane-bed form	8	16	341	5,456
Restored pool-riffle complexity	31	62	435	26,970
				5-fold
				increase

Combining redd density and egg-to-fry survival to estimate **fry abundance**

Alluvial fan condition	Number of redds	Number of adults	Fry adult ⁻¹	Fry abundance		
Current plane-bed form	8	16	341	5,456		
Restored pool-riffle complexity	31	62	435	26,970		
Actual redd counts → average 6 per year						
Question is:						
Can we achieve restoration assumptions?						

Lost fry production

Yearling habitat degraded, yet still not fully seeded

Context of Skagit Recovery

Restoring Goodell could achieve (with caveats):

- 0.4% of fry recovery goal
- 1% to 3% of yearling recovery goal
- 0.2% of adult recovery goal

Context of Skagit Recovery

Restoring Goodell could achieve (with caveats):

- 0.4% of fry recovery goal
- 1% to 3% of yearling recovery goal
- 0.2% of adult recovery goal

Percentages may seem small, but consider within context of an ambitious recovery strategy across a large basin with 6 independent populations

Context of Skagit Recovery

Restoring Goodell could achieve (with caveats):

- 0.5% of fry recovery goal
- 1% to 3% of yearling recovery goal
- 0.2% of adult recovery goal

NMFS Viable Salmonid Population criteria

- Spatial structure upstream spawn extent; large tributary
- Diversity yearling life-history; snow-melt hydrology
- Abundance redd density; returning adults
- Productivity egg-to-fry survival; rearing habitat capacity

Acknowledgements

Partner Organizations

NATIONAL PARK SERVICE

North Cascades National Park Complex

Salmon Recovery Funding Board, Puget Sound Acquisition and Restoration Fund

National Estuary Program (PA-01J01601)

Goodell Creek Feasibility Study (Herrera 2017)

- Contact Rick Hartson, Upper Skagit Indian Tribe
 - rickh@upperskagit.com
- Download from WA RCO website
 - PRISM project search \rightarrow project number 15-1174