

Reintroduction of Salmon into their Historic Habitats (Two-Part Session)

A Concurrent Session at the 35th Annual Salmonid Restoration Conference held in Davis, CA from March 29 – April 1, 2017.

Session Overview

- Session Coordinators:
 - Curtis Knight, CalTrout
 - Rob Lusardi, Ph.D., CalTrout/UC Davis

Climate change, aging water infrastructure, successive years of drought, and increasing demand for water resources has precipitated strong declines in salmonids throughout California. Compounding this, longitudinal and lateral disconnections from historical spawning and rearing habitat has triggered a loss of salmonid life history diversity, making species less resilient to change. As a result, reintroductions of salmonids to historical habitat has occurred or is proposed as a recovery strategy. Dam removal, trap and haul above high head dams, reintroduction of captive bred animals, and improving lateral connectivity to historical floodplain habitat are proposed methods to improve salmonid life history diversity, abundance, population redundancy and, ultimately, resilience to change. We seek abstracts that examine the methods, science, and policy implications of salmonid reintroductions to historical habitat.

+ Presentations

Part 2 of Morning session

(Slide 4) *continued* ... Achieving Reintroduction through the Federal Power Act Steve Edmondson, NMFS

(Slide 13) Salmon in the Sierra: Reintroduction into the North Yuba River Chris Shutes, California Sportfishing Protection Alliance

(Slide 43) Two-Way Trap and Haul as a Conservation Strategy for Anadromous Salmonids Robert Lusardi, Ph.D., California Trout and University of California Davis

Passage is Biologically Feasible

		Fishery User Input Values									
		Info Reset Default Values			Boundary Value User Modifiable Value						
		Best Case	Expected	Worst Case	Best Case	Expected	Worst Case	Best Case	Expected	Worst Case	
		Info Model Results Interpretation	Total Habitat Accessed		Total Adults Passed			Total Juveniles Released			
		Info Best Case Expected Worst Case	647476			192	192	192	60341	23520	14550
Output from			Adult Return to			Juvenile Release to			Adult Return to		
Output Iron			Ad	ult Passed I	Ratio	Adult Passed Ratio					
Odenweller			4.15	1./2	0.12	314.28	122.50	/5./8	0.01	0.01 North Fork	0.00
		Spawning Potential	Best Case	Expected	Worst Case	Best Case	Expected	Worst Case	Best Case	Expected	Worst Case
Model:		Prespawn Mortality Survival Rate (%)				97%	95%	90%	97%	95%	90%
		Redd Size (sf)	27	55	223						
		Egg Production Per Female	5520	5365	5209						
		In River Egg to Smolt Survival Rate, Stream (%)				13%	6%	5%	13%	6%	5%
Brood	Occor	In River Egg to Smolt Survival Rate, Ocean (%)				15%	9%	3%	15%	9%	3%
DIUUU	Ocean	Juvenile Collection									
Voor	Surv.	Low T <u>ributary Flow - Screen</u>									
ieai.	Surv	Proportion of Juvenile Capture (%)				95%	95%	95%	95%	95%	95%
1007	0 7760	Screen Capture Efficiency (%)				95%	95%	95%	95%	95%	95%
1997	0.7700	High Tributary Flow - Gulper									
1008	1.8623 1.5817	In Reservoir Mortality Survival Rate (%)				96%	91%	88%	96%	91%	88%
1990		Gulper Capture Efficiency (%)				79%	50%	21%	79%	50%	21%
1000		Juvenile Sorting and Tagging				000/	0.501	0.001		0.50 (
1999		Sorting Efficiency (%)	050/	F00/	750/	99%	95%	90%	99%	95%	90%
		% Juvenile Sized for PTT Tagging (%)	25%	50%	/5%						
		% Appropriate Juvenile PTT Tagged (%)	10%	20%	30%						
			50%	00%	70%	00%	07%	05%	00%	07%	05%
		Holding Sunival Rate (%)				9976 QQ%	97%	86%	99%	97%	86%
		Downstream.luvenile Transport				5576	5170	0070	3370	5170	0070
		Emigration Period (days)		200							
		Barge Survival Rate (%)		200		99%	95%	70%	99%	95%	70%
		Truck Survival Rate (%)				99%	98%	88%	99%	98%	88%
		Adult Immigration & Passage						·			
		Immigration Period (days)		120							
		Juvenile Release to Adult Capture, Stream (%)	1.32%	1.41%	0.16%						
		Juvenile Release to Adult Capture, Ocean (%)	0.66%	0.23%	0.08%						
		Adult Holding & Sorting Survival Rate (%)	99%	97%	95%						
		Adult Trucking Survival Rate (%)	99%	96%	92%						
		Marina Adult Release Efficiency (%)	75%	50%	25%						

Engineering Feasibility

Public interest determination

The Opportunity Is There

Hundreds of FERC licensed dams up for renewal...

Baker River (170 MW) -- Puget Sound Energy (2 dams) Settlement 2004. Upper Baker FSC about \$50 Million. Lower Baker FSC about \$50 Million. Baker Adult Trap about \$20 million. Total Investment of 5170 million. Target - Fish Guidance Efficiency is 97%; facility survival is 98%, fish collection is 95%, and reservoir survival is 80%. Measured collection (2014) Upper Baker: Coho 71.3%; Sockeye 74.3%. Lower Baker (2014): Coho 68.8%; Sockeye 87.6%.

Cushman (185 MW) -- Tacoma Power Settlement 2009, \$25 million Investment in downstream passage efforts. Entering "shakedown" phase and monitoring. Wells (840 MW) -- Douglas County PUD Settlement 2002, \$188 million investment. Met 93% Targeted Project Survival -- Measured survival is 96.4% for yearling Chinook, steehead, sockeye and coho

Rocky Reach (1280 MW) -- Chelan County PUD Settlement 2002: \$510 million Investment. Met 93% Total Project Survival - Measured spring Chinook is 92.3% (combined aduit and Juvenile standard); steelhead Juvenile is 95.6%; and sockeye Juvenile is 93.6%

Rock Island (624 MW) – Chelan County PUD Settement 2002, \$316 million investment. Met 93% Targeted Project Survival – Measured spring Chinook juvenile is 93.7%; steelhead juvenile is 96.7%; and sockeye juvenile is 93.3%

White River (flood control) – US Army Corps 95% Targeted Project Survival

Target - Fish Guidance Efficiency is 95%;

handling in passage facilities is 98% and reservoir survival is 80%

Cowiltz Falls Project (70 MW)- Lewis PUD Facilities currently being constructed. Target - Fish Passage Survival (total project) is 95-75%

ar Project (435 MW) – Tacoma Power (2 dams) 1000. 540 million investment; 249 miles of habitat Passage Survival is 95%; handling in passage reservoir survival is included in project survival goal.

Fruit of Juan de Fued

MW) -- PacifiCorp (3 dama) on investment; opens up 174 miles of habitat. leted - coming on line this season. llection Efficiency > 95%; is Is 99.5% for smolts and 98% for fry. 6 (combination of all 3 dams) Wanapum (1092 MW) - Grant County PUD Settlement 2005, \$600 million combined with Priest Rapids. Met 93% Targeted Project Survival - Measured project survival Chinoki Is 94.5%; Steelhead Is 92.9%

Priest Rapids (356 MW) – Grant County PUD Settlement 2005, 5600 million combined with Wanapum. Met 33% Targeted Project Survival – Measured project survival Chinook is 96,1%; Steelhead is 96,1%

Bonneville (1860 MW) -- US Army Corps Total project survival estimates: Chinook is 94%; Steelhead is 96% (2009-2013 averages) Lower Granite (810 MW) – US Army Corps Measured project survival Chinook is 93%; Steelhead is 99% (2009-2013 averages)

Lower Monumental (810 MW) -- US Army Corps Measured project survival Chinook is 97%; Steelhead is 95% (2009-2013 averages)

Ioe Harbor (803 MW) -- US Army Corps Total project survival estimates: Chinook is 97% Steehead is 95% (2009-2013 averages)

> MoNary (860 MW) -- US Army Corps Total project survival estimates: Chinook is 97%

Little Goose (81)

Measured project

Steelhead is 95%

Questions?

Oregon and Washington projects with trap and haul

Project	Adult passage	Juvenile Passage
Baker (Puget Sound Energy) <mark>312ft</mark>	yes	yes
Cle Elum (BOR) <mark>165ft</mark>	yes	under design
Cougar (Corps) <mark>452ft</mark>	yes	future addition
Cowlitz River (Tacoma Power) <mark>606ft</mark>	yes	yes
Cushman (Tacoma Power) 235ft	yes	yes
Dexter Reservoir (Corps) <mark>93ft</mark>	yes	passage via spill
Fall Creek (Corps) <mark>180ft</mark>	yes	drain reservoir to river level for seasonal passage
Faraday/North Fork (Portland General Electric) <mark>85ft</mark>	yes (hands free sorting for wild fish)	yes

NMFS-SWR Habitat Conservation Division 11

Continued:

Foster (Corps) <mark>126ft</mark>	yes	passage via spill
Howard Hanson (Corps) 235ft	yes	future addition
Hells Canyon (Idaho Power) <mark>328ft</mark>	yes	relicensing incomplete
Lewis River (PacifiCorp) 313ft; 323ft; and 512ft	yes	yes - first of 3 FSC's is coming on line
Little Goose (Corps) <mark>98ft</mark>	volitional	yes - capture/transport location
Lower Granite (Corps) <mark>100ft</mark>	volitional	yes - capture/transport location
McNary (Corps) <mark>183ft</mark>	volitional	yes - capture/transport location ***(used on "as needed" basis)
Minto (Corps)	yes	future addition
Mud Mountain Dam (Corps) <mark>432ft</mark>	yes	passage through dam - no generation units
Pelton-Round Butte (Portland General Electric) 440ft; 204ft; and 88ft	yes	yes
Umatilla (Westland) 24ft		yes

North Yuba Salmon Reintroduction in a Central Valley Context Chris Shutes California Sportfishing Protection Alliance April 1, 2017

Preface:

What this presentation is not

- It is not a blow-by-blow description of the Yuba Salmon Partnership (YSP)
- It is not a point-by-point defense of the YSP program (trap and haul from Lower Yuba to North Yuba, and lower Yuba habitat actions)
- We've done that in several workshops, and don't have a lot more to add at this time.

Copies of my rationale in support of the project are available

Hard copies here in the room
 http://calsport.org/news/we-need-to-get-salmon-upstream-of-central-valley-rim-dams/

We live with many unspoken assumptions

- Roads will allow us to attend conferences and we'll have a place to park
- Water will come out of the tap
- Sewage treatment will happen
- Food will be available as long as we can pay for it.

And so we have assumptions about CV spring-run salmon

- Populations exist in many locations
- Another is coming on the San Joaquin
- Hatcheries (love or hate 'em) produce them.
- Regulations will protect them

The last 5 years show how tenuous Central Valley spring-run really are.

Lower Feather River February 2017

Oroville Dam, February 9, 2017

Lower Feather River March 2017

Riverbend Park, Oroville, March 6, 2017, Chico Enterprise-Record

Oroville hatchery February, 2017

February 10, 2017

Oroville hatchery February 2017

February 10, 2017

Butte Creek 2015

Threatened salmon die after utility temporarily shuts canal

By ELLEN KNICKMEYER | June 22, 2015 | 5:35 PM EDT

SAN FRANCISCO (AP) — More than one-tenth of the largest wild population of threatened salmon in the Central Valley died after repair work near a power plant led Pacific Gas & Electric Co. to cut off a cooling flow of water into a creek, wildlife and utility officials said Friday.

Butte Creek February 16, 2017: PG&E will not operate DeSabla Project

Pacific Gas and Electric Company

Project No. 803-087 (DeSabla-Centerville)

NOTICE OF WITHDRAWAL OF APPLICATION FOR NEW LICENSE

Spring-run trends 2008-2015 Sacramento River tribs abv Feather

California Department of Fish and Wildlife - Fisheries Branch Anadromous Assessment - GrandTab CHINOOK SALMON ESCAPEMENT - SPRING RUN

YEAR.	Sacramento River Mainsten			Battle	Clear	Cotton-	Antelope	Mill	Thomes	Deer	Big	Butte	Butte
E^{*}	Upstr. RBDD 1.	Downstr. RBDD	TOTAL	Ck 4	Ck	wood Ck	Ck	Ck	Ck.	Ck	Chico Ck	Ck Snorkel	Ck: 5/ Carcass
2008		52	52	105	200	0	3	381		140	0	3,935	11,046
[2009]		0		194	120	p	0	220		213	6	2,059	2,687
[2010]	1	0	C	172	21	15	17	482	1	262	2	1,160	1,991
[2011]	1	0	C	157	8	2	6	366	-	271	124	2,130	4,871
[2012]	C	0	1	799	68	1		768	T (734	0	8,615	16,317
[2013]	1	0	0	608	659	1	0	644	1	708	0	11,470	16,782
[2014]	0	0		429	95	2	7	679		830	0	3,616	5,083
[2015]		0	C	181	45	Q	5	127		268	0	1,082	569

CENTRAL VALLEY: Sacramento and San Joaquin river systems

San Joaquin River Restoration

Text of Proposed HR 23 (Valadao) January 30, 2017

San Joaquin River Restoration

SEC. 114. SAN JOAQUIN RIVER SETTLEMENT. 3

- (a) CALIFORNIA STATE LAW SATISFIED BY WARM 4 5 WATER FISHERY.-
- 6 (1) IN GENERAL.—Sections 5930 through 5948 7 of the California Fish and Game Code, and all appli-8 cable Federal laws, including the San Joaquin River 9 Restoration Settlement Act (Public Law 111–11) 10 and the Stipulation of Settlement (Natural Resources Defense Council, et al. v. Kirk Rodgers, et 12 al., Eastern District of California, No. Civ. S-88-13 1658–LKK/GGH), shall be satisfied by the existence of a warm water fishery in the San Joaquin River 15 below Friant Dam, but upstream of Gravelly Ford.

11

14

San Joaquin River Restoration

(b) REPEAL OF THE SAN JOAQUIN RIVER SETTLEMENT.—As of the date of enactment of this section, the
Secretary of the Interior shall cease any action to implement the San Joaquin River Restoration Settlement Act

Central Valley spring-run need spatial diversity

A variety of approaches to CV salmon reintroduction

- Tuolumne:
 - Regulatory proceeding in La Grange licensing
 - Habitat evaluation on the Tuolumne is about where study was on the Yuba in ~2003
- Mokelumne :
 - Very modest, voluntary low budget approach (fall-run)
- McCloud (winter-run):
 - Pilot program, step-wise, very deliberate
- Oroville and NF Feather hydro projects
 - Punted 10 years ago

Yuba Salmon Partnership

- Two components to plan:
- Trap and haul program from Lower Yuba to North Yuba River upstream of New Bullards Bar Reservoir

• Lower Yuba River habitat improvements

North Yuba Reintroduction

Yuba Salmon Partnership (YSP)

- Ongoing FERC proceeding but contested jurisdiction of FERC over dam owned by Army Corps
- Licensee willing to contribute but not to take all responsibility for reintroduction
- Two willing fisheries agencies
- NGO's willing to take heat, broaden outlook of licensee, offset potential for agency paralysis

From study to action

- 15 yrs. of study: reintroducing salmonids to upper Yuba watershed (Upper Yuba River Studies Program, Yuba Salmon Forum, NMFS studies, info. from Yuba-Bear/Drum-Spaulding and Yuba River Development relicensings)
- Is trap and haul better than no passage at all?
- Not everyone agrees with YSP answer, or that it's time to stop asking questions

Solve problems or fight?

- Some examples that CSPA has been part of:

 San Joaquin River lawsuit
 Amador vs El Dorado
 CSPA vs. EBMUD
 Foothill Conservancy v. EBMUD
- Most water fights aim to get to the point where it is possible to solve problems

All parties have to ask ... If we fight now, will we:

- Start from a better place in the future?
- Get a better outcome?
- Get a better process?

Is a fight worth the delay or the risk?

YSP decided to pull together to work out everything we can

- A plan
- Facilities
- Funding
- Performance
- An achievable timeline

- Governance
- Regulatory issues:
 - ESA
 - CESA
 - FERC license
 - State Board Water
 Quality Certification
 - A dozen-odd permits
- Potential impacts to others

YSP decided to leave some subjects to other processes

YSP doesn't have an agreement yet

- It is complicated
- It is expensive
- It is hard to work together
- Similar to a construction project, the last part of the process is the hardest and takes the most time.
- An extended process allows more time to get pieces into place

If we reach an agreement, it will take a long time to implement

- My best guess: about ten years to move the first fish
- It will still be hard
- We will try to structure a program that does not get in the way of success
- There will be trial and there will be error

Why we may succeed

- No apparent better option
- The right organizations working together
- The right people
- Intelligent sequencing
- We may start soon enough to save the species
- Putting resources toward results and not towards perceived preconditions for results

This is not the only way to do this.

But it is important that a group think through and plan a complete reintroduction program.

Two-way trap and haul (TH2) as a conservation strategy for anadromous salmonids

Central Valley Salmon and Steelhead

- Central Valley steelhead
- Spring-run Chinook
- Winter-run Chinook

Winter-run habitat

Winter-run habitat

NMFS 2016

Not much better for spring-run Chinook

Trap and haul: Columbia River fish barges

Two-way trap and haul (TH2)

Recovery Action? Two-way trap and haul (TH2)

- What TH2 programs currently exist?
- How effective are these programs?
- What does the science say?

Transportation Effects

- Reduce adult homing ability (Bond et al. 2017)
- Earlier ocean entry and reduced growth rates (Muir et al. 2006, Rechisky 2012)
- Impaired auditory function (Halvorsen et al. 2009)
- Adult failure to pass dams (Keefer et al. 2008)
- Adult pre-spawn mortality (Keefer et al. 2010)

Population Replacement

- Cohort Replacement Rate > 1.0?
- Willamette River Programs
 - Evans et al. (2016): 0.96-1.56
 - Sard et al. (2016): 0.31-0.41
 - O'malley et al. (2015): 1.07
- Willamette programs: juveniles pass volitionally

Images: USBR

Juvenile Outmigration Capture Efficiency

- Deschutes River TH2 Program (2010-2014):
 - 5.8 million hatchery fry and smolts released (SRC and SH)
 - 169,000 individuals successfully migrated through reservoir, captured, and released
 - Outmigration capture rates: 0.3-7.9% of total.
 - 102 and 337 adult SRC and SH returned as adults

Summary

- Uncertainties
 - Delayed mortality
 - Population replacement rate
 - Out-migrant capture efficiency
 - Role of hatchery supplementation?
- Most TH2 programs are new or in experimental phases
- Except.....

Baker River TH2

Baker River Adult Sockeye Returns

Floating Surface Collectors

Baker River Adult Sockeye Returns

CONCLUSIONS

- Uncertainty associated with TH2 programs: delayed mortality, population replacement, juvenile capture, role of hatcheries
- May be most appropriate for critically endangered species
- Move in parallel with long-term conservation strategies that consider the entire life cycle of the species
- Clearly define measurable and objective success criteria, approach experimentally and adaptively, be part of a comprehensive conservation strategy

