

Modeling Salmonid Habitat for Restoration

A Concurrent Session at the 36th Annual Salmonid Restoration Conference held in Fortuna, California from April 11 – 14, 2018.

+ Session Overview

Session Coordinator:

 James Graham, Ph.D., Humboldt State University The session will focus on presenting modeling methods available for habitat modeling and applications of modeling to specific areas for restoration. This would focus on modeling the environmental and anthropomorphic elements that affect salmonid habitat including: topography, hydraulic dynamics, bottom composition, shading, and aquatic temperature. This session would bring together examples of the wide variety of methods available. A panel at the end of the session will discuss steps forward.

Presentations

(Slide 4) Flow, Form, and Function: Integrated Hydro-geomorphic Modeling Reveals Opportunities and Trade-offs for River Restoration Belize Lane, PhD, Utah State University

(Slide 31) Integrating Hydraulic Modeling Based Simulations of Salmonid Habitat Suitability with Geomorphic, Hydrologic, and Fisheries Data for Restoration Prioritization, Russian River Watershed Jeremy Kobor, MS, PG, Senior Hydrologist, O'Connor Environmental

(Not Posted) Increasing the Availability of Spawning Habitats through Building Base Flow Patterns as Found in Natural Flow Regimes Damon Goodman, USFWS

(Slide 58) A Streamlined Modeling Approach Quantifying Existing Habitat Conditions and Guiding Restoration Brian Cluer, PhD, NOAA Fisheries

(Slide 107) Modeling Stream Temperatures with the Inclusion of Irradiance Change Due to Forest Biomass Shifts Jonathan James Halama, PhD, ORISE Fellow with Environmental Protection Agency

(Slide 141) What's in a Number: Southern Steelhead Population Viability Criteria? Mark Capelli, PhD, Steelhead Recovery Coordinator, Southwest Fisheries Center, NOAA Fisheries

Flow, Form, and Function

An extensible framework for regional environmental flows

Belize Lane, PhD

Dept. of Civil and Environmental Engineering Utah State University

April 14, 2018

Acknowledgements

California's river ecosystems are in a critical state

50% of salmonids expected to be extinct within 50 years

Foothill Yellow Legged Frog, USFW 2017

Endangered aquatic species

95% of native riparian vegetation has been lost

Need to identify and promote critical ecosystem functions

Ecological processes

Geomorphic processes

Biogeochemical processes

Site-specific approach

However, given the rate and scale of degradation, and the desire for coordinated regional management, we need an *upscaling method...*

NO STA.

Regional approach

Flow, Form, Function Framework

Geomorphic classification

Site- and speciesspecific studies

Characterize essential patterns & processes

Key ecosystem functions

Final Outcome: A tool for generating spatially-explicit, biologically & physically informed regional environmental flow targets

1. Define key ecosystem functions

1. Define key ecosystem functions

Bed Occupation Bed Preparation

Biological threshold

2. Characterize geomorphic patterns & processes

Field Surveying

- Cross-section morphology
- Sub-reach variability
- Sediment composition

Statistical Analysis

Archetype Development

Pasternack and Arroyo 2018

Regional geomorphic classification

Headwater, constricted, cobble

Upland, confined ole with floodplain pockets

Headwater, steep,

confined, boulder

Lower main-stem South Fork Eel, confined with floodplain pockets, large cobble-gravel

Upper main-stem South Fork Eel and tributary, constricted, bedrock

Holiza di Desetto collicitat

Upland, confined with floodplain pockets

Headwater, steep, confined, boulder

Lower main-stem South Fork Eel, confined with floodplain pockets, large cobble-gravel

Upper main-stem South Fork Eel and tributary, constricted, bedrock

South Fork Eel River

Regional geomorphic classification

Semi-confined pool-riffle

- Sinuous
- Low-mid slope
- High depth and width variability
- Gravel

Upland confined plane bed

- Confined
- High slope
- Low depth and width variability
- Large cobble

Generate synthetic river archetypes

River Builder User's Manual

Pasternack and Arroyo 2018

Generate synthetic river archetypes

University

3. Hydrodynamic modeling

Assessment Mode

3. Hydrodynamic modeling

POOL-RIFFLE

Non-functional

Jul Aug Sep

Jun

Functional

Dec Jan

Feb

Mar Apr May

Month

Nov

0.00

UtahState

University

4. Quantify function performance

4. Quantify function performance

UtahState

Performance Metrics

$$Rel_{vol}^{i} = \frac{\sum_{t=1}^{t=n} Altered_{t}^{i}}{\sum_{t=1}^{t=n} Unimpaired_{t}^{i}}$$

$$Rel_{time}^{i} = \frac{\# of D_{t}^{i} = 0}{n}$$

$$Vul^{i} = \frac{\frac{\left(\sum_{t=0}^{t=n} D_{t}^{i}\right)}{\# \ of \ D_{t}^{i}}}{Avg(Unimpaired_{t}^{i})}$$

$$SI^i = \left[\prod_{m=1}^M C^i_M\right]^{1/M}$$

Lane et al. In Review JWRPM

Monthly/annual performance metrics

$$Rel_{vol}^{i} = \frac{\sum_{t=1}^{t=n} Altered_{t}^{i}}{\sum_{t=1}^{t=n} Unimpaired_{t}^{i}}$$
$$Rel_{time}^{i} = \frac{\# of \ D_{t}^{i} = 0}{n}$$

$$Vul^{i} = \frac{\frac{\left(\sum_{t=0}^{t=n} D_{t}^{i}\right)}{\# of D_{t}^{i}}}{Avg(Unimpaired_{t}^{i})}$$

$$SI^{i} = \left[\prod_{m=1}^{M} C_{M}^{i}\right]^{1/M}$$

Lane et al. In Review JWRPM

Spatial performance

Adapted from Carolli et al. 2017

Hydrodynamic modeling Prediction Mode

What flow regimes are capable of meeting performance targets?

Prediction Mode

UtahState

Adapted from Carolli et al. 2017

Next Steps: User-friendly tool for watershed-scale environmental flows testing and prescription

Flow, Form, Function Framework

Geomorphic classification

Apr

May Jun

Jul

Aug Sep

Site- and speciesspecific studies

THANK YOU!

QUESTIONS?

Integrating Hydraulic Modeling-based Simulations of Salmonid Habitat Suitability with Geomorphic, Hydrologic, and Fisheries Data for Restoration Prioritization, Russian River Watershed, CA

Jeremy Kobor, MS, PG

Senior Hydrologist O'Connor Environmental, Inc. Healdsburg, CA www.oe-i.com

April 14, 2018

Acknowledgements

Project Partners

• Pepperwood Foundation

Funding

• CDFW Fisheries Restoration Grant Program

Technical Work Group

- SeaGrant
- CDFW
- NOAA Fisheries
- Sonoma RCD

Motivation

The Challenge

- Recovery plans have identified hundreds of river miles of high priority Coho habitat - thousands of parcels
- Generally limited information, limited funding

Landowner-driven Approach

identify cooperative landowners develop projects to fit a given site

Habitat Potential-driven Approach

identify the best places for projects perform targeted landowner outreach

develop projects where most needed/most suitable

Study Area

Project Overview

- Characterize geomorphic and hydrologic conditions using LiDAR and hydrologic/hydraulic models
- Relate hydraulic and geomorphic variables to Coho rearing habitat suitability
- Quantify existing habitat availability and identify sites/reaches for habitat enhancement projects
- Integrate SeaGrant monitoring data
- Prioritize identified candidate project sites/reaches
- Develop conceptual designs

Hydrology

- Empirical rainfall-runoff models (NAM) 32-yr daily simulation
- Flood frequency analyses 3 USGS gauges

Hydrology

Simulated Flows

- Winter Baseflow (median Nov-Mar)
 - 8 to 48 cfs
- 10% Exceedance Flow
 - 51 to 198 cfs
- Bankfull Flow (1.5-yr flood)
 - 1,024 3,933 cfs
- 10-yr Flood
 - 2,975 to 8,039 cfs

Hydraulics

- 1-dimensional hydraulic models (MIKE 11)
- 4,300 LiDAR-derived cross sections (81.3 river miles)
- 2-dimensional mapping (conveyance distribution/LiDAR)

Calibration

Calibrated to gauge data from USGS, TU, and NOAA

Habitat Suitability Indices

 Juvenile coho salmon curves - Beecher et al., 2002 (western WA streams)

Habitat Suitability

Combined Habitat Suitability Index (HSI)

HSI_{Combined} = SQRT(HSI_{Depth} * HSI_{Velocity})

Weighted Useable Area (WUA)

WUA = HSI_{Combined} * Area

Results – Mill Creek @ Winter Baseflow

Results – Mill Creek @ Bankfull

Results – Mill Creek @ 10-yr Flood

Habitat Suitability (Depth & Velocity) Mill Creek @ bankfull flow

Habitat Suitability (Flow Regime) Mill Creek – SeaGrant Wet/Dry Mapping (2013 – 2017)

Coho Distribution

Mill Creek – SeaGrant Snorkel Surveys (2014 – 2017)

In-stream Project Prioritization

Initial Prioritization Based on WUA

Low - reaches with WUA < average Medium – reaches with WUA > average (2 of 4 flows) High – reaches with WUA > average (3 of 4 flows) Very High – reaches with WUA > average (all flows)

Adjust for Flow Regime

Exclude - reaches with disconnected pools in most years Increase priority – reaches with connected pools even in drought years

Adjust for Coho Abundance

Decrease priority - reaches with no Coho Increase priority – reaches with above average number of Coho

Instream Project Prioritization

• Mill Creek – WUA, Flow Regime, Coho Counts

Ease of Implementation

- Equipment Access
 - distance <200-ft & slopes <30% from nearest road to top of bank
- Anchoring Sites
 - sample LiDAR-derived canopy height along banklines

Instream Project Prioritization

• Mill Creek – Good Anchoring Sites/Equipment Access

Instream Project Prioritization

 Pena Creek – Good Anchoring Sites/Equipment Access

Identification of Off-channel Project Sites

Scan model results for:

 Side channels, alcoves, frequently activated floodplains

ID	Туре	Size	Access	Location
	East Austin	Creek		
EA1	Floodplain	0.8 acres	1	1
EA2	Floodplain	0.8 acres	1	1
EA3	Side-channel	300-ft	1	1
EA4	Floodplain with alcove	3.7 acres	1	1
EA5	Floodplain	1.7 acres	1	1
EA6	Floodplain	1.6 acres	1	1
EA7	Side-channel	350-ft	0	1
EA8	Floodplain	3.4 acres	0	1
EA9	Floodplain	0.8 acres	1	1
EA10	Multi-thread Side-channel	830-ft	0	1
EA11	Floodplain with alcove	0.8 acres	0	1
EA12	Floodplain with alcove	0.7 acres	0	1
EA13	Floodplain with alcove	1.4 acres	1	1
EA14	Multi-thread Side-channel	1,160-ft	1	1
EA15	Floodplain with alcove	1.1 acres	0	0
EA16	Multi-thread Side-channel	870-ft	1	1
EA17	Multi-thread Side-channel	590-ft	0	1
EA18	Side-channel	330-ft	1	1
EA19	Side-channel	320-ft	1	0
EA20	Side-channel	330-ft	1	0
EA21	Side-channel	280-ft	1	0
Gray Creek				
Gr1	Side-channel	70-ft	1	1
GR2	Side-channel	220-ft	1	1

Prioritization of Off-channel Project Sites

- Access
- Proximity to high priority reaches

High Priority Very High Priority

Comparisons Between Streams

		Weighted Useable Area (acres)			
Watershed	Winter Baseflow	10% Exceedance Flow	Bankfull Flow	10-yr Flood Flow	
Mill Creek	11.7	16.4	18.2	20.2	
Pena Creek	11.1	15.1	16.9	22.3	
East Austin Creek	16.5	17.0	15.1	16.6	
Redwood Creek	2.5	2.9	4.3	5.2	

Comparisons Between Streams

Watershed	WUA (ac/mi)	% Connected Pools	Coho (#/mi)
Mill	0.74	83%	37
Wallace	0.98	0%	2
Felta	0.68	47%	26
Palmer	0.83	100%	19
Pena	0.90	14%	48
Pechaco	0.32	0%	1
Redwood Log	0.77	na	na
Woods	0.68	73%	141
East Austin	1.01	na	44
Gray	0.38	94%	90
Gilliam	0.45	100%	120
Thompson	0.17	na	2
Redwood	0.49	60%	4
Kellogg	0.38	na	na
Yellowjacket	0.18	na	na

Highest Value - Mill, Palmer, East Austin, Woods Flow-limited - Felta, Wallace, Pena, Pechaco **WUA-limited** - Gray, Gilliam, Thompson, Redwood, Kellogg, Yellowjacket

Thank you!

jeremyk@oe-i.com

A Streamlined Modeling Approach for Quantifying Existing Habitat Conditions and Guiding Restoration

Brian Cluer, Charleen Gavette, Bryan Pestone NOAA Fisheries - West Coast Region

brian.cluer@noaa.gov

16.4 river km 12.9 valley km sinuosity 1.3 2500 acres pasture

and the Rt

Pacific City

Beaver

Hebo

101

Cloverdale

e Rd

Using Available Data:

- 3' LiDAR (fall of 2012)
 - Bare earth
 - Highest hits
- USGS gage record
 - 35 years
 - Peak flows
 - Daily flows
 - Example annual hydrograph

<u>5 cover classes</u>	
Channel (0-0.08)	n0.04
Forest (+10)	n0.07
High shrub (3.0-10.0)	n0.15
Low shrub (1.0-3.0)	n0.1
Grass (0.08-1.0)	n0.03

Terrain and Cover

 $\leftarrow \mathsf{Lidar} \ \mathsf{Dem}$

 \downarrow land cover, roughness polygons

Gage record: 35 yrs

≊USGS

Velocity shear zones, eddies, Ov

HecRas 2d

- Run model for a wide range of flows
- Extract model output for each flow
 - Depth
 - Velocity [0 to 1 fps]
- Quantify habitat areas (GIS)
 - Areas that meet specified range
- Create Habitat / Flow relationship

USGS 14303600)
Flow cfs	
500	mid-May
1000	Apr
1500	Nov, Feb
2000	Dec - Jan
2500	
3000	
3500	
Peak Flow cfs	
4200	Q1
10000	Q1.5
13000	Q2
18000	Q5
21000	Q10
30000	Q40

Nov-Feb 1,500 cfs

Velocity fps

0.00	
0.50	
1.00	
1.50	
2.00	
2.50	
3.00	
3.50	
4.00	
4.50	
5.00	
5.50	
6.00	

Dec-Jan 2,000 cfs

Velocity fps

0.00	i.	
0.50		
1.00		
1.50		
2.00		
2.50		
3.00		
3.50		
4.00		
4.50		
5.00		
5.50		
6.00		

Winter 2,500 cfs

Velocity fps

0.00	ĺ.	
0.50		
1.00		
1.50		
2.00		
2.50		
3.00		
3.50		
4.00		
4.50		
5.00		
5.50		
6.00		

Winter 3,500 cfs

Velocity fps

0.00	
0.50	
1.00	
1.50	
2.00	
2.50	
3.00	
3.50	
4.00	
4.50	
5.00	
5.50	
6.00	

Q1: 4,200 cfs

Velocity fps

0.00	
0.50	
1.00	
1.50	
2.00	
2.50	
3.00	
3.50	
4.00	
4.50	
5.00	
5.50	
6.00	

USGS 14303600		
Flow cfs		
500	mid-May	
1000	Apr	
1500	Nov, Feb	
2000	Dec - Jan	
2500		
3000		
3500		
Peak Flow cfs		
4200	Q1	
10000	Q1.5	
13000	Q2	
18000	Q5	
21000	Q10	
30000	Q40	

6.00

USGS 14303600		
Flow cfs		
500	mid-May	
1000	Apr	
1500	Nov, Feb	
2000	Dec - Jan	
2500		
3000		
3500		
Peak Flow cfs		
4200	Q1	
10000	Q1.5	
13000	Q2	
18000	Q5	
21000	Q10	
30000	Q40	

5.50 6.00

Q10: 21,000 cfs

Velocity fps

0.00	
0.50	1
1.00	
1.50	
2.00	
2.50	
3.00	
3.50	
4.00	
4.50	
5.00	
5.50	
6.00	

Habitat / Flow

• X Y graph of habitat area vs flow

Apply results:

- Integrate H/Q relationship over any flow period
- Example: Oct 2012 May 2013 (avg. year)
- Quantify Habitat on Daily Time Step
- Accumulate Habitat Over a Relevant Juvenile Rearing Season to Evaluate Reach Performance

Integrate habitat over a flow time-series

600

0-1 fps

20000

10000

1000

Discharge, cubic feet per second

21000

30000

[•] Median daily statistic (35 years) — Period of approved data — Discharge

Habitat Time Series

Rearing Season Cumulative Habitat

Habitat Time Series For Dry, Normal, Wet Water Years

Rearing Season Cumulative Habitat by Water Year Type

101

Objective-Based Scenario Modeling

0-1 fps

Rearing Season Cumulative Habitat

R.I.

Coho Salmon Intrinsic Potential Model

Historic vs. Current [ground-truth]

Summary:

- Analysis takes 1 day analyze many reaches or many watersheds quickly
- Results are
 - Quantified and Repeatable
 - Habitat vs Flow Model is Adaptable
 - Can Simulate Past or Future Conditions
 - Flow
 - Past, future, climate scenarios, change in water diversions
 - Terrain
 - Restoration work or geomorphic processes
 - Changes in land use
 - Prioritize restoration actions
 - Restoration work effectiveness
 - Target high value areas; conservation and enhancement

Key idea:

- Most (all?) habitat modeling attempts precision in all the variable parameters.
 - Requires oodles of field data
 - Species-specific preferences
 - Seeking <u>answers</u> misunderstanding models and how they are useful
- Departing from the basis of the hydraulic model, and forsaking insight.
 - Relationships between parameters
 - Differences between scenarios
 - System vs. site responses
 - Reach-scale comparisons
 - Watershed-scale comparisons
- The simplified inexpensive model is better than no model.

Modeling Stream Temperatures with the Inclusion of Irradiance Change Due to Forest Biomass Shifts

Jonathan Halama, MPH, PhD

VELMA Modeling Team: Bob McKane, Brad Barnhart, Paul Pettus, Kevin Djang, Allen Brookes

> U.S. Environmental Protection Agency Western Ecology Division Corvallis, OR.

36th Annual Salmonid Restoration Conference on April 14, 2018

10 8

\$EPA

Outline

- Research Question
 - How may forest management practices impact stream water **quantity** and **quality**, specifically temperature?
- Methodology
 - Spatial Model Integration and Simulation
- Preliminary Results
 - Landscape ground-level irradiance
 - Water quantity
 - Water temperature quality
- Future Research
 - Dynamic stream temperature model that responses to a spatial system through mechanistic behavior.

Office of Research and Development National Health and Environmental Effects Research Laboratory

Summaries of Each Process-based Model

- VELMA (Visualizing Ecosystem Land Management Assessments)
 - Hydrology:

🔅 FPA

- Upland water moving on surface
- Upland water moving through subsurface layers
- Soil Temperature
- Penumbra: Ground-level Shade and Irradiance
 - Light reduction (Shade):
 - Landscape objects
 - Topography
- Version 1 VELMA-Stream Temperature Model (VELMA-STM, beta)
 - Per VELMA "stream" cell, using Adams & Sullivan Model (USFS, 1989)
- Version 2 Stream Temperature Model
 - Overcome some limitations of the VELMA-STM

\$EPA

VELMA Overview

Soil Column Scale

VELMA Soil Drainage & Runoff Parameters

https://www.epa.gov/water-research/visualizing-ecosystem-land-management-assessments-velma-model-20

VELMA: fate & transport of water & nutrients Plots \rightarrow watersheds; days \rightarrow centuries

♥EPA

11 2

Climate & Land Use Effects Simulated

Carbon litroger Water

Cvcline

• Hydrology: streamflow, vertical & lateral flow, evapotranspiration, available soil moisture...

То

Stream

• Plants & Soils: uptake, transformation and transport of carbon, nutrients and toxics from terrestrial to aquatic systems

VELMA: fate & transport of water & nutrients Plots \rightarrow watersheds; days \rightarrow centuries

Climate & Land Use Effects Simulated

Carbon

Water

Cycline

• Hydrology: streamflow, vertical & lateral flow, evapotranspiration, available soil moisture...

То

Stream

• Plants & Soils: uptake, transformation and transport of carbon, nutrients and toxics from terrestrial to aquatic systems

EPA

VELMA: fate & transport of water & nutrients **SEPA** Plots \rightarrow watersheds; days \rightarrow centuries Carbor Water То Cveline Stream **Ecosystem Services Simulated** Water quality & quantity Food & fiber production Carbon sequestration Greenhouse gas control (CO₂, N₂O, NO_x) Fish & wildlife habitat (links to population models) 114

Primary upland sources & flow paths by which nitrate is flushed to marsh

(arrow size and background color indicate amount of nitrate flushed per day)

VELMA Validation Examples

Forest Growth

400

500

HJ Andrews Experimental Forest, Watershed 10 (Abdelnour et al. 2011 and 2013, in Water Resources Research)

Streamflow

€PA

Penumbra Stream Shade & Irradiance

Penumbra Model Spatially Distributed Light Processes

Per cell, spatially explicit assessment of Object shade and Topographic shade

SEPA

Penumbra Testing

Varied Forest Stand Heights at 1-m resolution

Penumbra ModelVaried Forest Stand Heights at 1-m resolution

Shade/Irradiance Model: Penumbra 2.0 Visualizer: VISTAS 1.10 Penumbra Model Varied Forest Stand Heights at 1-m resolution

Moose Mountain initial results, and calibrated results.

Open Site	Initial Run	Calibrated Run	Forest Site	Initial Run	Calibrated Run
Percent Agreement	0.52	1.03	Percent Agreement	1.55	1.86
RMSE	506.0	224.6	RMSE	77.8	53.8
Mean Error	286.1	-17.3	Mean Error	-10.0	-15.6

SEPA

Figure 4-1: Penumbra-VELMA tightly-coupled model integration.

Presented in this research, VELMA initial 1990 biomass and 1990-2008 historic harvest patterns are defined by LandTrendr. Simulation outputs displayed by VISTAS v1.10.

€PA

VELMA - Penumbra Interaction

VELMA-AST and VELMA-AST3 O'CCMoN results.

O'CCMoN Paired		Soil Layer 1		Soil Layer 2				
Site Locations	Sites	AST (r ²)	AST3 (r ²)	AST (r ²)	AST3 (r ²)			
Cascade Head	cade Head Open Site (CHO)		0.7649	0.7125	0.9466			
	Forest Site (CH14)	0.7401	0.8679	0.7062	0.9412			
Moose Mountain	Open Site (MMO)	0.8080	0.9202	0.6704	0.9291			
	Forest Site (MMF)	0.8860	0.9286	0.6981	0.9423			
Soapgrass	Open Site (SGO)	0.8003	0.8543	0.6864	0.9001			
	Forest Site (SGF)	0.6869	0.9175	0.5667	0.8901			
Toad Creek	Open Site (TCO)	0.8213	0.8257	0.7256	0.9189			
	Forest Site (TCF)	0.8318	0.8984	0.6427	0.8939			
$ \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ $								
Observed G	Julian Day round 1 Modeled Ground 1	Iulian Day —— Observed Ground I ——— Modeled Ground 1						

Tolt River Floodplain near Carnation, WA

1) Click link to navigate this floodplain in 3D: <u>https://www.google.com/maps/@47.6319956,-121.9250542,801a,35y,12.19h,49.46t/data=!3m1!1e3?hl=en</u> 2) See next page for Penumbra model analysis of changes in floodplain shading as vegetation increases in height during 2000 – 2275.

Engaged Stakeholders

- Seattle Public Utility
- King County, WA
- Seattle City Light
- City of Carnation, WA
- Snoqualmie Tribe
 - EPA Region 10

Penumbra Animation of Projected Changes in Floodplain Shading Tree Height Growth from years 2000 to 2275

- Notes: Maximum tree height is attained throughout the floodplain by 2100.
- Vegetation height changes outside the floodplain were not simulated.

Sedar

LTER: HJ Andrews WS1

LTER: HJ Andrews WS1

EPA

Figure 4-1: Penumbra-VELMA tightly-coupled model integration.

Presented in this research, VELMA initial 1990 biomass and 1990-2008 historic harvest patterns are defined by LandTrendr. Simulation outputs displayed by VISTAS v1.10.

Tectah Watershed Modeling

Tectah Stream Temperature

- Dry part of season: August 1st, 2016
- Yet there is not a linear pattern of stream warming.
 - 15.2°C14.6°C
 - 13.1°C
 - 14.5°C 12.5°C -
- Just like stream water quantity is influenced by ground water, stream temperature is at least partially influenced ground water.

Set EPA

Tectah Watershed Modeling

SEPA

13

3

Conclusions

- Penumbra is new way to model landscape irradiance to help with stream temperature research by modeling:
 - Object shadowing (forest and riparian zone)
 - Topographic shadowing (hills, mountains, canyons)
 - Provide high-resolution (1-m where LiDAR) stream surface solar energy loads.
- Penumbra-VELMA Integration provides:
 - Improved soil temperature estimates across watersheds.
 - A modeling method of spatially transporting ground-water temperature and volume through a system and into the stream.
- Integration allows dynamic forests simulations of solar energy on:
 - Riparian zone increase in shadowing through time.
 - Change in solar energy at the ground-level (<u>open</u> versus <u>forest</u>).
 - Variations in soil temperatures.
 - Variations in snow pack retention.

Office of Research and Development National Health and Environmental Effects Research Laboratory

13

4

Questions?

Contact: Jonathan Halama halama.jonathan@epa.gov Or jjhalama@Willamette.edu

Office of Research and Development National Health and Environmental Effects Research Laboratory

13

5

Extra Slides

Office of Research and Development National Health and Environmental Effects Research Laboratory Young vigorously growing forests can transpire up to three times more water than old forests

Note: Perry & Jones (2016) report similar results for watershed-scale flow measurements

Watershed 10, HJ Andrews, OR

- 0.1 km² headwater catchment
- 450 year-old conifer forest
- Clearcut in 1975
- Stream discharge data 1969-

137

Set EPA

138

Primary upland sources & flow paths by which nitrate is flushed to marsh

(arrow size and background color indicate amount of nitrate flushed per day)

ANIMATION – wiggle mouse over image & click run arrow

Penumbra Irradiance

Floodplain at 1-m resolution for Single Summer Day

Next step: convert daily irradiance to water temperature (temperature of groundwater inflow also accounted for)

€PA

VELMA Overview

https://www.epa.gov/water-research/visualizing-ecosystem-land-management-assessments-velma-model-20

141

What's In a Number: Southern Steelhead Population Viability Criteria?

National Marine Fisheries Service

36th Annual Salmonid Restoration Conference

Fortuna River Lodge, CA April 11-14, 2018

Mark H. Capelli Recovery Coordinator

National Marine Fisheries Service

Southern California Steelhead Recovery Planning

Southern California Steelhead DPS

Viable Salmonid Population (VSP)

Biological Diversity

Spatial Distribution

Viable Salmonid Population (VSP)

Southern California Steelhead Recovery Planning

NMFS Technical Recovery Team: South-Central and Southern California Steelhead Dr. David A. Boughton, Chair

Dr. David A. Boughton NMFS Santa Cruz Lab

Dr. Eric Anderson NMFS Santa Cruz Lab

Dr. Edward Keller UC Santa Barbara

Leo Lentsch CMWD

Katie Perry CDFW

Dr. Jerry Smith Cal State San Jose

Dr. Lisa Thompson UC Davis Dr. Peter A. Adams NMFS Santa Cruz Lab

Dr. Craig Fusaro CalTrout

Dr. Elsie Kelley UC Santa Barbara

Dr. Jennifer Nielsen USGS

Dr. Helen Regan UC San Diego

Dr. Camm Swift Loyola Marymount

Dr. Fred Watson Ca State, Monterey

Population Characterization

Intrinsic Potential Ranking

Based on the Envelop Method

California Fire Frequency

State-wide accurrence of fires from California Department of Forestry and Fire Protection database, over Jepton ecoregions for California

Southern California Steelhead DPS

Largest Recent Southern California Wildfires 2003: Cedar Fire – 257,246 ac.

2007: Witch Fire – 197,990 ac.

2007: Zaca Fire – 240,207 ac.

2009: Station Fire – 160,649 ac.

2017: Thomas Fire – 281,893 ac.

Southern California Steelhead DPS

Station Fire - 2009

Old Fire - 2003

Thomas Fire 2017

Harris Fire - 2007

Cedar Fire - 2003

Thomas Fire 2017

Thomas Fire 2017

Thomas Fire Burn:

Ventura River/ Matilija Creek

Watershed

Thomas Fires 2017

Thomas Fire 2017

Matilija Canyon Pre – Post Thomas Fire

Thomas Fire 2017

Matilija Canyon Pre – Post Thomas Fire

Before and After Fire Effects

Day Fire: 162,202 ac.

Sespe Creek 2002 - before fire

2008 - after fire

Before and After Fire Effects

Santa Ana River – Harding Creek

2006 - before fire

2007 - after fire

Southern California Steelhead DPS

Landscape Characterization

Biogeographic Groups

Southern California Steelhead DPS

Biogeographic Population Groups

DPS-Wide Viability

Goals

- Preserve over-all species diversity (genetic, phenotypic, life-history)
- Protect species from extinction due to catastrophic disturbance (wildfires, flooding, droughts)

Note: 1000-year time horizon

Southern California Steelhead DPS

Wildfire Frequency and Size

Resilience & Redundancy

Southern California Fire Frequency

*Projected Thousand-Year Wildfire Burn Area

Based on 1910 – 2003 Data

DPS-Wide Viability

Strategy

- Minimum number viable in each biogeographic region
- Occupy watersheds with drought refugia
- Minimum geographic separation (wildland fire analysis)
- Exhibit life history diversity

< 5% extinction risk in 1000 years

Southern California Steelhead DPS

Number of Populations Required for Recovery

Southern California Steelhead DPS

Threats to Recovery

- * Access to Spawning and Rearing Habitat
- * Degradation of Instream/Riparian Habitat
- * Spread of Non-Native Species
- * Wildfires
- * Loss of Estuarine Habitat

What's In a Number: Southern Steelhead Population Viability Criteria?

National Marine Fisheries Service

36th Annual Salmonid Restoration Conference

Fortuna River Lodge, CA April 11-14, 2018

Mark H. Capelli Recovery Coordinator

